
Answers to Odd-Numbered Exercises for
Fox, Applied Regression Analysis
and Generalized Linear Models,

Third Edition (Sage, 2016)

John Fox

Answers last modified: 2021–06–20

This document provides worked-out answers to the odd-numbered exercises in the text (excluding the
data-analysis exercises on the website for the text). The answers to both odd- and even-numbered questions,
are available from Sage Publications in a separate document for instructors using the text in a college or
university class.

About the starred—more difficult–exercises: “More difficult” is interpreted in context, and so there is a
higher bar for difficulty in starred sections and chapters. Many of the starred exercises are derivations that I
considered too tedious to include in the text, and some of them are at a considerably higher level of difficulty
than I assumed for even the starred parts of the text.

In many instances, I simply elided from the text intermediate steps in what would have been lengthy but
relatively unenlightening proofs, and in some cases, I didn’t bother to complete these proofs but thought
that I understood how to do so. I’m embarrassed to say that occasionally proved not to be the case, and
the project of working the exercises revealed weaknesses and even errors in some of the questions, and more
rarely in the text itself (as enumerated in the errata for the text). A few of the starred exercises are at a
higher level of difficulty than I intended, and in answering these I’ve tried to provide solutions that are as
simple as possible.

The answers are nearly, but not quite complete: I’ve yet to devise suitable answers to Exercise 20.5 and part
of Exercise 20.11, and will update this document if and when I do so. Missing answers are marked, “To be
completed.”

Although the text is written to be software-neutral, some of the exercises require the use of statistical
software. I employed the R statistical computing environment (R Core Team, 2021) for these exercises, but
you should feel free to substitute other appropriate statistical software for R. See Fox and Weisberg (2019)
for an introduction to R in the context of regression analysis that largely overlaps with the text.

1



Exercises for Chapter 1
Exercise 1.1

(a) There isn’t a strong basis for making a causal claim here, because students self-select whether or
not to complete homework assignments. It seems reasonable to suppose that the more diligent
students are likely to complete more homework assignments, and that, by, e.g., studying more,
they likely would have done better in the course even in the absence of homework assignments.
That is, this is an observational study in which it’s likely that there are important omitted common
prior causes of homework completion and grades.

(b) Yes, it should be possible to design a randomized comparative experiment to study the effect of
homework completion on grades, but as a practical matter it wouldn’t be easy to do so. It would
be difficult to randomize homework-assignment policies within an individual class and so it would
probably be necessary to assign a sufficiently large number of different classes at random to one
of two or more conditions with varying homework policies. For example, one condition might
dispense with assigned homework while another might require it.

(c) Yes, it should be possible to make a more convincing case on the basis of observational data
by trying to control statistically for known potential common prior causes of both homework
completion and grades in the course. We could, for example, control statistically for students’
prior grade-point averages.

Copyright © 2021 by John Fox. 2 All rights reserved.



Exercises for Chapter 2
Exercise 2.1*

(a) If X is evenly (or even just symmetrically) distributed in the interval around xi, and if E(Y |x) is
a linear function of X in the interval, then the average value of E(Y |x) in the interval µ̄i is the
same as the value µi = E(Y |xi) at the center of the interval.

(b) If X is evenly distributed in the interval, then it’s not generally the case that µ̄i = µi, but
it is possible, depending on the shape of the regression function in the interval. Consider the
following graph, for example, where the regression function in the interval satisfies the equation
f(xi)− f(xi − δ) = f(xi + δ)− f(xi), thus “balancing” departures from f(xi) to the left and right
of xi:

µ = f(x)

µi = µi

xi

(c) This really isn’t different in principle from (b): If the relationship between E(Y |x) andX is nonlinear
in the interval around xi, it could happen by chance that µ̄i = µi if the uneven distribution of X
values in the interval offsets the nonlinear relationship when the conditional values E(Y |x) in the
interval are averaged with weights proportional to their frequency—for example, if the nonlinear
relationship is as in the figure above, and if the distribution of X in the interval is uneven but
symmetric about xi.

If, however, the relationship is linear in the interval, and if the distribution of X in the interval is
both uneven and asymmetric, then µ̄i will be pulled away from µi.

Copyright © 2021 by John Fox. 3 All rights reserved.



Exercises for Chapter 4
Exercise 4.1

Here’s a graph similar to Figure 4.1 but for the ordinary power transformations:

0 1 2 3 4

0

5

10

15

20

X

X
' − 1

0

1

2

3

So that the scale of the transformed scores isn’t too compressed, I stopped the vertical axis at 20, which
excludes the largest values of X ′ = X3.

The general effect of the raw power transformations is similar to the corresponding Box-Cox transfor-
mations: That is, transformations down the ladder of powers (logeX,X−1)increasingly spread out the
small values of X relative to the large values, while those up the ladder (X2, X3) spread out the large
values relative to the small ones. In addition, however, the raw inverse transformation X ′ = X−1 is
monotone decreasing and so reverses the order of the X values. The graph does a much poorer job of
revealing the essential properties and unity of the power-transformation family than does Figure 4.1 for
the Box-Cox family of transformations.

Exercise 4.3*

(a) I didn’t develop the “MLE” for the one-parameter Box-Cox family in any detail in the text (with
“MLE” in quotes because, as I explained, there isn’t a likelihood in the strict sense of the term),
so I’ll start with that: Here, the transformation is Y ≡ X(λ) ≡ (Xλ − 1)/λ. For simplicity, I’m
ignoring the possibility that λ is exactly 0; recall that in this case, Y ≡ logeX.

At the true value of λ, the transformed variable Y is normally distributed with (say) mean µ and
variance σ2. So

p(y) = 1
σ
√

2π
exp

[
− (y − µ)2

2σ2

]

= 1
σ
√

2π
exp

−
(
xλ−1
λ − µ

)2

2σ2



Copyright © 2021 by John Fox. 4 All rights reserved.



A perhaps subtle point is that we can’t work with p(y) directly because its scale changes with λ
and so we want to find p(x), which depends on the Jacobian of the transformation from X to Y
(see on-line Appendix D, Section D.1.3, on transformations of random variables); adapting the
result in the preceding problem,

dY

dX
= Xλ−1

and so

p(x) = xλ−1p(y)

= xλ−1 1
σ
√

2π
exp

−
(
xλ−1
λ − µ

)2

2σ2


For a fixed value of λ, the MLEs of µ and σ2 are

µ̂ =
∑ xλi −1

λ

n

σ̂2 =

∑(
xλi −1
λ − µ̂

)2

n

The log-likelihood as a function of λ is then

loge L(λ) = (λ− 1)
∑

logeXi −
n

2 loge σ̂2 − n

2 loge 2π −

∑(
Xλi −1
λ − µ̂

)2

2σ̂2

= (λ− 1)
∑

logeXi −
n

2
(
loge σ̂2 + loge 2π + 1

)
The “MLE” for the two-parameter Box-Cox transformation Y ≡ X(λ,α) ≡ (Xλ − α)/λ is only
slightly more complicated.1 In this case, Y is normally distributed at the true values of λ and α,

p(y) = 1
σ
√

2π
exp

−
[

(x−α)λ
λ − µ

]2
2σ2


The Jacobian of the transformation from X to Y is

dY

dX
= (X − α)λ−1

The probability-density at X = x is then

p(x) = (x− α)λ−1 1
σ
√

2π
exp

−
[

(x−α)λ
λ − µ

]2
2σ2


and the log-likelihood as a function of λ and α is

loge L(λ, α) = (λ− 1)
∑

loge(Xi − α)− n

2
(
loge σ̂2 + loge 2π + 1

)
where, now

µ̂ =
∑ (xi−α)λ

λ

n

σ̂2 =

∑[
(xi−α)λ

λ − µ̂
]2

n
.

1It would possibly have been less confusing if I had added α to X rather than subtracted it, but because α can either be
negative or positive (or 0), the two definitions of X(λ,α) are equivalent.

Copyright © 2021 by John Fox. 5 All rights reserved.



(b) Programming MLE for the two-parameter Box-Cox transformation in a numerically stable manner
isn’t straightforward. I experimented both with programs that I wrote myself and with the
boxcoxfit() function in the geoR package (Ribeiro Jr et al., 2020) for the R statistical computing
environment.

I was unable to get a satisfactory solution to transforming interlocks in the Ornstein interlocking-
directorate data, in that the negative Hessian matrix of second-order partial derivatives of the
log-likelihood at the putative MLE wasn’t positive-definite, making it impossible to compute the
covariance matrix of λ̂ and α̂. In contrast, I had no trouble estimating λ for the one-parameter
Box-Cox transformation of interlocks, using an arbitrary fixed start of 1, added to the data,
obtaining λ̂ = 0.125 with standard error SE(λ̂) = 0.053.

I also tried a variety of artificial problems without much luck, for example, randomly generating
n = 1000 observations with λ = 3 and α = −2, so that when the resulting X values are properly
transformed, X(λ,α) would be normally distributed with µ = 100 and σ2 = 152. I obtained
the estimates λ̂ = 4.78 and α̂ = −11.8, with very large standard errors SE(λ̂) = 17.51 and
SE(α̂) = 75.9, and sampling correlation r(λ̂, α̂) = −.997!

Copyright © 2021 by John Fox. 6 All rights reserved.



Exercises for Chapter 5
Exercise 5.1*

(a) We already know that
∑
Ei = 0 and

∑
XiEi = 0. Thus,

∑
ŶiEi =

∑
(A+BXi)Ei = A

∑
Ei +B

∑
XiEi = 0 + 0 = 0

(b) This follows almost immediately from the preceding result:

∑
(Yi − Ŷi)(Ŷi − Ȳ ) =

∑
Ei(Ŷi − Ȳ ) =

∑
EiŶi − Ȳ

∑
Ei = 0 + 0 = 0

Remark: Results like these are obvious from the vector geometry of linear least-squares regression,
which is developed in Chapter 10.

Exercise 5.3*

This is just a simpler version of the derivation of the least-squares coefficients in simple regression (on
page 85). We have S(A′) =

∑
(Yi −A′)2 and dS(A′)/dA′ = −1× 2

∑
(Yi −A′). Setting the derivative

to zero and solving for A′ produces

−2
∑

(Yi −A′) = 0∑
Yi − nA′ = 0

A′ =
∑
Y

n
= Ȳ

Exercise 5.5*

This is just a generalization of the derivation of the least-squares coefficients in simple regression. The
sum of squares function in multiple regression is

S ≡ S(A,B1, B2, . . . , Bk) =
∑

[Yi − (A+B1Xi1 +B2Xi2 + · · ·+BkXik)]2

The partial derivatives of S with respect to the regression coefficients are

∂S

∂A
=
∑
{1× 2× [Yi − (A+B1Xi1 +B2Xi2 + · · ·+BkXik)]}

∂S

∂B1
=
∑
{−Xi1 × 2× [Yi − (A+B1Xi1 +B2Xi2 + · · ·+BkXik)]}

∂S

∂B2
=
∑
{−Xi2 × 2× [Yi − (A+B1Xi1 +B2Xi2 + · · ·+BkXik)]}

...
∂S

∂Bk
=
∑
{−Xik × 2× [Yi − (A+B1Xi1 +B2Xi2 + · · ·+BkXik)]}

Setting the partial derivatives to 0, dividing each equation on the left-hand side by 2, multiplying
through by the Xs, summing the terms in each equation separately, bringing the coefficients outside of
the sums, and isolating the term for Y in each equation on the right-hand side produces the normal
equations as shown in Equations 5.7.

Copyright © 2021 by John Fox. 7 All rights reserved.



Exercise 5.7

(a) I used R to perform the necessary computations:
> library (" carData ") # for Prestige data set

> summary (lm( prestige ~ income + education + women , data= Prestige ))

Call:
lm( formula = prestige ~ income + education + women , data = Prestige )

Residuals :
Min 1Q Median 3Q Max

-19.8246 -5.3332 -0.1364 5.1587 17.5045

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -6.7943342 3.2390886 -2.098 0.0385 *
income 0.0013136 0.0002778 4.729 7.58e -06 ***
education 4.1866373 0.3887013 10.771 < 2e -16 ***
women -0.0089052 0.0304071 -0.293 0.7702
---
Signif . codes: 0 '***'0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.846 on 98 degrees of freedom
Multiple R- squared : 0.7982 , Adjusted R- squared : 0.792
F- statistic : 129.2 on 3 and 98 DF , p-value: < 2.2e -16

> my <- lm( prestige ~ income + women , data= Prestige )
> mx <- lm( education ~ income + women , data= Prestige )
> ey <- residuals (my)
> ex <- residuals (mx)
> round(coef(lm(ey ~ ex)), 6)
( Intercept ) ex

0.000000 4.186637

(b) Both sets of residuals have means of 0 and so the regression necessarily goes through the origin.

(c) Yes, that’s a reasonable way to think about the two sets of residuals—at least the linear dependence
of Y and X1 on the other Xs is removed.

(d) The procedure has the effect of reducing a multiple regression—that is, a k + 1-dimensional
problem—to a sequence of simple regressions—that is, a sequence of 2-dimensional problems. As
the exercise suggests, that leads to added-variable plots, discussed in Section 11.6.1.

Copyright © 2021 by John Fox. 8 All rights reserved.



Exercises for Chapter 6
Exercise 6.1*

(a) From the text, B =
∑
miYi, where

mi = xi − x̄∑n
j=1(xj − x̄)2

Then

E(B) =
∑

miE(Yi)

=
n∑
i=1

xi − x̄∑n
j=1(xj − x̄)2 (α+ βxi)

= α∑
(xj − x̄)2

∑
(xi − x̄) + β∑

(xj − x̄)2

∑
(xi − x̄)xi

The first term in the last line is 0 because
∑

(xj − x̄) = 0. To show that the second term is β, and
hence that E(B) = β, I need to prove that

∑
(xi − x̄)xi =

∑
(xj − x̄)2, which isn’t difficult:∑

(xj − x̄)2 =
∑

(xj − x̄)(xj − x̄)

=
∑

(xj − x̄)xj − x̄
∑

(xj − x̄)

=
∑

(xj − x̄)xj − x̄× 0

=
∑

(xj − x̄)xj

I hope that it’s clear that it doesn’t matter if we sum over the subscript i or j.

(b) It’s straightforward to show the A is a linear function of the Y s:

A = Ȳ −Bx̄

= 1
n

∑
Yi −

∑
(xi − x̄)(Yi − Ȳ )∑

(xi − x̄)2 x̄

= 1
n

∑
Yi −

∑
(xi − x̄)Yi∑
(xi − x̄)2 x̄

=
∑
i

[
1
n
− x̄(xi − x̄)∑

j(xj − x̄)2

]
Yi

Demonstrating that E(A) = α is then also straightforward, if tedious. Using E(Yi) = α+ βxi,

E(A) =
∑
i

[
1
n
− x̄(xi − x̄)∑

j(xj − x̄)2

]
(α+ βxi)

=
∑ α

n
+
∑

β
xi
n
− αx̄

∑
(xi − x̄)∑

(xj − x̄)2 − β
x̄
∑

(xi − x̄)xi∑
(xj − x̄)2

= α− βx̄− αx̄× 0− βx̄× 1
= α

because in the second line of this equation,
∑

(xi − x̄) = 0 in the numerator of the third term, and∑
(xi − x̄)xi =

∑
(xj − x̄)2 in the numerator and denominator of the fourth term.

Comment: It’s perhaps surprisingly much easier to establish the unbias of the least-squares estimators,
and other properties of the least-squares estimators, for the more general case of multiple regression
using the matrix representation of the linear regression model (see Section 9.3).

Copyright © 2021 by John Fox. 9 All rights reserved.



Exercise 6.3

When the mean of the xs is far from 0, the sum of squares in the numerator
∑
x2
i is much bigger

than the sum of squares in the denominator
∑

(xi − x̄)2. That makes intuitive sense because when
the x-values are far from 0 the intercept can vary a great deal for a small change in the slope of the
regression line, as illustrated in the following graph:

x

Y

0

0

The solid line in the graph is the least-squares line; the broken lines also go through the means of the
two variables but have slopes approximately 25% smaller and 25% larger than the least-squares slope.

Exercise 6.5*

The log-likelihood is

loge L(α, β, σ2
ε) = −n2 loge(2πσ2

ε)− 1
2σ2

ε

∑
(yi − α− βxi)2

The partial derivatives of the log-likelihood with respect to the parameters are

∂ loge L
∂α

= 1
σ2
ε

∑
(yi − α− βxi)

∂ loge L
∂β

= 1
σ2
ε

∑
xi(yi − α− βxi)

∂ loge L
∂σ2

ε

= − n

2σ2
ε

+
∑

(yi − α− βxi)2

2(σ2
ε)2

Setting the partial derivatives to 0, it’s apparent that the first two equations are zero when the sums are
zero (i.e., multiply both of these equations by σ2

ε). The two resulting equations (substituting estimates
for the parameters and rearranging),

nα̂+ β̂
∑

xi =
∑

yi

α̂
∑

xi + β̂
∑

x2
i =

∑
xiyi

Copyright © 2021 by John Fox. 10 All rights reserved.



are just the least-squares normal equations for A and B in simple regression. Then
∑

(yi − α̂− β̂xi)2

in the third equation is the sum of squared least-squares residuals,
∑
E2
i , and so

n

2σ̂2
ε

=
∑
E2
i

2(σ̂2
ε)2

Multiplying both sides of this equation by 2σ̂2
ε and solving for σ̂2

ε produces

σ̂2
ε =

∑
E2
i

n

Exercise 6.7

The “hints” effectively answer the question: We compare the regression of Y on x1 and x2 with the
regression of Y on the sum of x1 and x2. The units of x1 and x2 must be the same for it to makes
sense to compare their coefficients directly.

Using, R for Duncan’s regression:
> library ("car") # for data and compareCoefs ()
Loading required package : carData

> m1 <- lm( prestige ~ income + education , data= Duncan )
> m2 <- lm( prestige ~ I( income + education ), data= Duncan )

> anova(m2 , m1)
Analysis of Variance Table

Model 1: prestige ~ I( income + education )
Model 2: prestige ~ income + education

Res.Df RSS Df Sum of Sq F Pr(>F)
1 43 7518.9
2 42 7506.7 1 12.195 0.0682 0.7952

> compareCoefs (m1 , m2)
Calls:
1: lm( formula = prestige ~ income + education , data = Duncan )
2: lm( formula = prestige ~ I( income + education ), data = Duncan )

Model 1 Model 2
( Intercept ) -6.06 -6.06
SE 4.27 4.23

income 0.599
SE 0.120

education 0.5458
SE 0.0983

I( income + education ) 0.5693
SE 0.0396

Thus the hypothesis that β1 = β2 is consistent with the data. The test is arguably sensible, because
both income and education are percentages, as long as we’re willing to equate a one percent increment
in relatively high-income earners with a one-percent increase in high-school graduates (which perhaps
doesn’t survive close scrutiny).

Exercise 6.9

(a) The model isn’t wrong: β2 is just 0, and B1 is still an unbiased estimator of β1.

Copyright © 2021 by John Fox. 11 All rights reserved.



(b) The second term is the same as the variance of B1 in simple regression, while the first term inflates
the variance of B1 in the multiple regression as long as r12 6= 0, with the inflationary effect growing
as r2

12 gets larger. The cost of including an irrelevant explanatory variable X2 is therefore to
decrease the precision of estimation of β1. The cost of failing to include a relevant (causally prior)
explanatory variable is to bias the estimate of β1. Which cost is more serious depends on their
magnitude—the mean-squared error of estimation is the sum of squared bias and variance—but if
we want to make a causal claim, we generally are more concerned with bias.

Exercise 6.11*

Multiplying Y = β′1X1 + β′2X2 + ε by X1 and X2 and taking expectations produces

σY 1 = β′1σ
2
1 + β′2σ12

σY 1 = β′1σ12 + β′2σ
2
2

where I put primes on the βs because I ignored the measurement error δ. Then solving for the β′s:

β′1 = σY 1σ
2
2 − σ12σY 2

σ2
1σ

2
2 − σ2

12

β′2 = σY 2σ
2
1 − σ12σY 1

σ2
1σ

2
2 − σ2

12

which are the population analogs of the least-squares regression coefficients.

Exercise 6.13

I used R for the necessary computations:
> library ("car") # for data and compareCoefs ()
Loading required package : carData

> m1 <- lm( prestige ~ income + education , data= Duncan )
> m2 <- lm( prestige ~ income , data= Duncan )
> compareCoefs (m1 , m2)
Calls:
1: lm( formula = prestige ~ income + education , data = Duncan )
2: lm( formula = prestige ~ income , data = Duncan )

Model 1 Model 2
( Intercept ) -6.06 2.46
SE 4.27 5.19

income 0.599 1.080
SE 0.120 0.107

education 0.5458
SE 0.0983

> sigma.delta <- c(10, 25, 50, 100)
> set.seed (4875938) # for reproducibility
> b <- matrix (0, 4, 2)
> for (i in 1:4){
+ Duncan $educ <- Duncan $ education + rnorm (45, 0, sigma.delta[i])
+ m <- lm( prestige ~ income + educ , data= Duncan )
+ b[i, ] <- coef(m )[2:3]
+ }
> b <- rbind(coef(m1 )[2:3] , b, c(coef(m2 )[2] , 0))
> rownames (b) <- c(0, sigma.delta , " simple regr")
> b

income education

Copyright © 2021 by John Fox. 12 All rights reserved.



0 0.5987328 0.54583391
10 0.7069395 0.44736446
25 0.9700231 0.20770187
50 0.9872692 0.07398901
100 1.0747356 0.02230014
simple regr 1.0803897 0.00000000

> plot(c(1, 6), range(b), type="n", axes=FALSE , frame=TRUE ,
+ xlab= expression (" Measurement error standard deviation in"~~X[2]) ,
+ ylab=" Regression coefficients ")
> axis (1, at =1:6 , labels = rownames (b))
> axis (2)
> lines(b[, 1], type="b", pch =15, lwd =2)
> lines(b[, 2], type="b", pch =16, lwd =2, lty =2)
> text(c(5, 5), c(0.95 , 0.1) , expression (B[" income "], B[" education "]))

Measurement error standard deviation in  X2

R
eg

re
ss

io
n 

co
ef

fic
ie

nt
s

0 10 25 50 100 simple regr

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bincome

Beducation

As the measurement error in education grows, the income coefficient is driven towards the slope
coefficient in the simple regression of prestige on income alone, while the education coefficient is driven
towards 0.

Copyright © 2021 by John Fox. 13 All rights reserved.



Exercises for Chapter 7
Exercise 7.1

If we use the coding Di = −1 for women and 1 for men, the two regression lines are:

women : Yi = α+ βXi + γ ×−1 + εi

= (α− γ) + βXi + εi

men : Yi = α+ βXi + γ × 1 + εi

= (α+ γ) + βXi + εi

The parameter γ is therefore half the difference in intercepts between women and men, and, because the
regression lines are parallel, half the difference in average income between women and men of the same
education. Yes, this coding captures the gender effect on income, holding education constant. And yes,
any coding of a dummy regressor that assigns two distinct values to women and men will fit the same
two regression lines, albeit with different parametrizations. We should, however, prefer a coding that
leads to easily interpreted coefficients, which is certainly the case for a 0/1 dummy regressor.

Exercise 7.3

Yes, we can compute adjusted means for a model that includes interactions, finding the fitted level of
the response within each group holding Xs constant at their overall means. The resulting adjusted
means therefore have a simple interpretation as the average value of the response in each group when
the Xs are fixed at their means, but are much less compelling than in an additive model, because the
differences between or among the groups varies with the values at the Xs are fixed.

Here’s a graph derived from Figure 7.7 showing unadjusted and adjusted means:

(a)

Education

In
co

m
e

Men

Women

(b)

Education

In
co

m
e

Men

Women

The graph is similar to that constructed for Exercise 7.1. In panel (a), where men and women have the
same average level of education, the adjusted (circles) and unadjusted (squares) means coincide (with
the squares obscuring the circles); in panel (b), where women on average have higher education than
men and a smaller education slope, the adjusted means differ much more than the unadjusted means.

Copyright © 2021 by John Fox. 14 All rights reserved.



Exercises for Chapter 8
Exercise 8.1*

We can by simple rearrangement write the square of t0 as

t20 =

(Ȳ1 − Ȳ2)2

1
n1

+ 1
n2∑

(Yi1 − Ȳ1)2 +
∑

(Yi2 − Ȳ2)2

n1 + n2 − 2

Because Ŷij = Ȳj for j = 1, 2, and because the residual degrees of freedom are n1 + n2 − 2, the
denominator of the equation for t20 is the residual mean square.

There is 2− 1 = 1 degree of freedom for the numerator of F0, and so we must show that the numerator
of t20 is the regression sum of squares. The numerator t20 can be rewritten as

(Ȳ1 − Ȳ2)2

1
n1

+ 1
n2

= (Ȳ1 − Ȳ2)2

n1 + n2

n1n2

= n1n2(Ȳ1 − Ȳ2)2

n1 + n2

Now, the regression sum of squares written directly is

RegSS = n1(Ȳ1 − Ȳ )2 + n2(Ȳ2 − Ȳ )2

where Ȳ = (n1Ȳ1 + n2Ȳ2)/(n1 + n2) is the overall mean of Y . Expanding the first term,

n1(Ȳ1 − Ȳ )2 = n1

(
Ȳ1 −

n1Ȳ1 + n2Ȳ2

n1 + n2

)2

= n1

[
(n1 + n2)Ȳ1 − n1Ȳ1 − n2Ȳ2

n1 + n2

]2

= n1

[
n2(Ȳ1 − Ȳ2)
n1 + n2

]2

The second term is similarly

n2(Ȳ2 − Ȳ )2 = n2

[
n1(Ȳ2 − Ȳ1)
n1 + n2

]2

Adding the two terms, and noting that (Ȳ1 − Ȳ2)2 = (Ȳ2 − Ȳ1)2, we have

RegSS = n1n
2
2(Ȳ1 − Ȳ2)2 + n2n

2
1(Ȳ1 − Ȳ2)2

(n1 + n2)2

= n1n2(n1 + n2)(Ȳ1 − Ȳ2)2

(n1 + n2)2

= n1n2(Ȳ1 − Ȳ2)2

n1 + n2

which completes the proof.

Copyright © 2021 by John Fox. 15 All rights reserved.



Exercise 8.3*

γjk − γj′k = γjk′ − γj′k′
(µjk − µj· − µ·k + µ··)− (µj′k − µj′· − µ·k + µ··)

= (µjk′ − µj· − µ·k′ + µ··)− (µj′k′ − µj′· − µ·k′ + µ··)

The result then follows immediately by canceling the “dotted” terms (i.e., marginal means):

µjk − µj′k = µjk′ − µj′k′

Exercise 8.5

I wrote a simple R script (not shown) to compute the cell means from the parameters of the several
models. The question doesn’t give the value of the general mean µ, which doesn’t affect the patterns
of cell means. I arbitrarily took µ = 10, but any value, including 0, will do. I chose to plot all of the
graphs of cell means on the same scale.

(a) The main-effects-only model. The cell means are
C_1 C_2 C_3

A_1 B_1 10 6 11
B_2 16 12 17

A_2 B_1 6 2 7
B_2 12 8 13

(a) main effects only

C

µ i
, j

, k

C1 C2 C3

0
5

10
15

20

A1 B1

A1 B2

A2 B1

A2 B2

A1

A2

B1

B2

In the absence of interactions, all four profiles of means are parallel.

(b) The model with AC interaction. The cell means are
C_1 C_2 C_3

A_1 B_1 11 4 10

Copyright © 2021 by John Fox. 16 All rights reserved.



B_2 17 10 16
A_2 B_1 7 1 9

B_2 13 7 15

(b) AC interaction

C

µ i
, j

, k

C1 C2 C3

0
5

10
15

20

A1 B1

A1 B2

A2 B1

A2 B2

A1

A2

B1

B2

The pairs of profiles for B1 and B2 fixing the level of A are parallel, reflecting the absence of BC
interaction, but the profiles for A1 and A2 fixing the level of B are not parallel, reflecting the AC
interaction. Given the layout of the graph, it’s harder to see that the AB interaction is also absent.

(c) The model with all two-way interactions. The cell means are
C_1 C_2 C_3

A_1 B_1 9 -1 5
B_2 22 12 21

A_2 B_1 9 0 8
B_2 14 5 16

Copyright © 2021 by John Fox. 17 All rights reserved.



(c) all two−way interactions

C

µ i
, j

, k

C1 C2 C3

0
5

10
15

20

A1 B1

A1 B2

A2 B1

A2 B2

A1

A2

B1

B2

Without explicitly taking differences in cell means (see below) it’s very hard to distinguish visually
between all two-way interactions and three-way interaction, in part (d). In both cases, the profiles
of means are not parallel.

(d) The model with ABC interaction. The cell means are
C_1 C_2 C_3

A_1 B_1 10 -3 6
B_2 21 14 20

A_2 B_1 8 2 7
B_2 15 3 17

/

Copyright © 2021 by John Fox. 18 All rights reserved.



(c) ABC interaction

C

µ i
, j

, k

C1 C2 C3

0
5

10
15

20
A1 B1

A1 B2

A2 B1

A2 B2

A1

A2

B1

B2

(ii) Here are graphs of differences in cell means across the two levels of factor B for cases (c) all
two-interactions and (d) ABC interaction:

(c) differences across B, all two−way interactions

C

µ i
, 1

, k
−

µ i
, 2

, k

C1 C2 C3

−
16

−
14

−
12

−
10

−
8

−
6

A1

A2

(d) differences across B, ABC interaction

C

µ i
, 1

, k
−

µ i
, 2

, k

C1 C2 C3

−
15

−
10

−
5

A1

A2

In the first case, the profiles of differences are parallel, while in the second case they aren’t.

Exercise 8.7

Copyright © 2021 by John Fox. 19 All rights reserved.



SS(αA) = n′
a∑
j=1

b∑
k=1

c∑
m=1

A2
A(j)

= n′bc

a∑
j=1

A2
A(j)

= n′bc

a∑
j=1

(Ȳj·· − Ȳ···)2

SS(αABC) = n′
a∑
j=1

b∑
k=1

c∑
m=1

A2
ABC(jkm)

= n′
a∑
j=1

b∑
k=1

c∑
m=1

(Ȳjkm − Ȳjk· − Ȳj·m − Ȳ·km + Ȳj·· + Ȳ·k· + Ȳ··m − Ȳ···)2

The residuals are Eijkm = Yijkm − Ȳjkm and so

RSS =
n′∑
i=1

a∑
j=1

b∑
k=1

c∑
m=1

(Yijkm − Ȳjkm)2

=
a∑
j=1

b∑
k=1

c∑
m=1

(n′ − 1)S2
jkm

= (n′ − 1)
a∑
j=1

b∑
k=1

c∑
m=1

S2
jkm

Exercise 8.9

(a) Setting each of X1 and X2 to its mean, the two terms involving the covariates drop out, and we
can then compute adjusted means as

Ỹjk = M +Aj +Bk + Cjk

(b) As mentioned in part (a), the terms involving the covariates drop out because the covariates
are expressed as deviations from their means, so we’re spared having to compute an adjustment
explicitly for each covariate.

(c) For a model that’s additive in the two factors, the adjusted means are simply

for rows: Ỹ(A)j = M +Aj

for columns: Ỹ(B)k = M +Bk

Exercise 8.11*

It’s apparent that, as claimed, the two columns for the interactions in the table of contrast “coefficients”
meet the criteria for contrasts: The columns sum to 0 and the sum of products for any pair of columns
is 0.

We can therefore treat the parameter corresponding to each contrast as a simple linear combination of
the six cells means, with weights proportional to the contrast coefficients. To make the meaning of each

Copyright © 2021 by John Fox. 20 All rights reserved.



parameter clearer, I’ll label the means with the subscripts C, A, or B, for the control group and the
two experimental groups, and either M or F for gender.

With some rearrangement to clarify the patterns:

(a)
ζ1 ∝ 2(µCM − µCF )− [(µAM + µBM )− (µAF + µBF )]

Thus, the null hypothesis for the interaction parameter H0: ζ1 = 0 specifies that the mean difference
between males and females in the control group is the same as the mean difference between males
and females in the average if the two experimental groups. All we need is that the parameter ζ1 be
proportional to the difference in averages. That is 2(µCM −µCF )− [(µAM +µBM )− (µAF +µBF )]
is 0 if and only if (µCM − µCF ) − 1

2 [(µAM + µBM ) − (µAF + µBF )] is 0. This is true for the
following parts of the exercise as well.

(b)
ζ2 ∝ (µAM − µAF )− (µBM − µBF )]

The null hypothesis for the interaction parameter H0: ζ2 = 0 specifies that the mean difference
between males and females in the first experimental group is the same as the mean difference
between males and females in the second experimental group.

(c)
δ1 ∝ 2(µCM + µCF )− (µAM + µBM + µAF + µBF )

The null hypothesis for the condition main-effect parameter H0: δ1 = 0 specifies that the mean
in the control condition averaged over gender is the same as the mean averaged over the two
experimental conditions and gender.

(d)
δ2 ∝ (µAM + µBM )− (µAF + µBF )

The null hypothesis for the condition main-effect parameter H0: δ2 = 0 specifies that the mean
in the first experimental condition averaged over gender is the same as the mean in the second
experimental condition averaged over gender.

(e)
β ∝ (µAM + µBM + µCM )− (µAF + µBF + µCF )

The null hypothesis for the gender main-effect parameter H0: β = 0 specifies that the mean for
males averaged over condition is the same as the mean for females averaged over condition.

Exercise 8.13*

Here are Equations 8.6 copied from the text:

α = µ23

β1 = µ13 − µ23

γ1 = µ21 − µ23

γ2 = µ22 − µ23

δ11 = µ11 − µ13 − µ21 + µ23

δ12 = µ12 − µ13 − µ22 + µ23

(a) The hypothesis H0: β1 = 0 is equivalent to H0: µ13 − µ23 or H0: µ13 = µ23, that is, that the
population cell means for rows R1 and R2 are the same at level C3 of the column factor.

The difference in means µ13−µ23 is sometimes termed a “simple effect” (the effect of one factor at
a particular level, C3, of the other factor), as opposed to a “main effect” (the general effect of one

Copyright © 2021 by John Fox. 21 All rights reserved.



factor at any fixed level of the other factor or possibly averaged over the levels of the other factor).
When there is interaction, the simple effects for the row factor vary by the level of the column
factor, and so the simple effect at any particular level isn’t reasonably construed as a main effect.

Similarly, the null hypothesis H0: γ1 = γ2 = 0 is equivalent to the null hypothesis H0: µ21 − µ23 =
0, µ22 − µ23 = 0 or H0: µ21 = µ22 = µ23, testing for the simple effect of the column factor within
level R2 of the row factor. If there is interaction, the simple effects of the column factor will vary
across the two rows.

(b) If there is no interaction, however, all of the row simple effects are equal to each other, and so
testing that any of them, for example, within the third column, is 0 tests the main effect of the
row factor. Likewise, in the absence of interaction, all of the column simple effects are equal, and
so testing that any of them, for example, within the second row, tests the column main effects.
These tests have low power, however, because they use only part of the data—the data only in the
first column for testing row effects and only in the first row for testing column effects.

Copyright © 2021 by John Fox. 22 All rights reserved.



Exercises for Chapter 9
Exercise 9.1*

(a) Expanding Equation 9.5, we have

µ1 = µ+ α1

µ2 = µ+ α2

...
µm−1 = µ+ αm−1

µm = µ− (α1 + α2 + · · ·+ αm−1)

Then, adding up these equations,

m∑
j=1

µj = mµ+
m−1∑
j=1

αj −
m−1∑
j=1

αj

So µ =
∑m
j=1 µj/m = µ·, µj = µ· + αj for j = 1, . . . ,m− 1, and αj = µj − µ· for j = 1, . . . ,m− 1.

(b) A straightforward (if tedious) approach is to invert XR and solve for β = X−1
R µ:

µ

α1

β1

β2

γ11

γ12


=



1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6 − 1

6 − 1
6 − 1

6
1
3 − 1

6 − 1
6

1
3 − 1

6 − 1
6

− 1
6

1
3 − 1

6 − 1
6

1
3 − 1

6
1
3 − 1

6 − 1
6 − 1

3
1
6

1
6

− 1
6

1
3 − 1

6
1
6 − 1

3
1
6





µ11

µ12

µ13

µ21

µ22

µ23


Then, writing out the result for each element on the left-hand side and rearranging:

µ = 1
6 (µ11 + µ12 + µ13 + µ21 + µ22 + µ23)

= µ··

α1 = 1
6 (µ11 + µ12 + µ13)− 1

6 (µ21 + µ22 + µ23)
= 1

2 (µ1· − µ2·)
= 1

2 [2µ1· − (µ1· + µ2·)]
= µ1· − µ··

β1 = 1
3 (µ11 + µ21)− 1

6 (µ12 + µ13 + µ22 + µ23)
=
( 1

3 + 1
6
)

(µ11 + µ21)− 1
6 (µ11 + µ12 + µ13 + µ21 + µ22 + µ23)

= µ·1 − µ··
β2 = 1

3 (µ12 + µ22)− 1
6 (µ11 + µ13 + µ21 + µ23)

= µ·2 − µ··
γ11 = 1

3µ11 − 1
6µ12 − 1

6µ13 − 1
3µ21 + 1

6µ22 + 1
6µ23

= 6
6µ11 − 2

6 (µ11 + µ12 + µ13)− 3
6 (µ11 + µ21) + 1

6 (µ11 + µ12 + µ13 + µ21 + µ22 + µ23)
= µ11 − µ1· − µ·1 + µ··

γ21 = − 1
6µ11 + 1

3µ12 − 1
6µ13 + 1

6µ21 − 1
3µ22 + 1

6µ23

= µ12 − µ1· − µ·2 + µ··

Copyright © 2021 by John Fox. 23 All rights reserved.



Exercise 9.3

I used R to invert X−1
B :

> XBInv <- matrix (c(
+ 0, 0, 0, 1,
+ 1, 0, 0,-1,
+ 0, 1, 0,-1,
+ 0, 0, 1,-1), 4, 4, byrow=TRUE)

> solve(XBInv)
[,1] [,2] [,3] [,4]

[1,] 1 1 0 0
[2,] 1 0 1 0
[3,] 1 0 0 1
[4,] 1 0 0 0

Thus, 
µ1
µ2
µ3
µ4

 =


1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0



µ
γ1
γ2
γ3


That is, µ1 = µ+ γ1, µ2 = µ+ γ2, µ3 = µ+ γ3, µ4 = µ, which is equivalent to 0/1 dummy coding.

Exercise 9.5

(a)* Multiplying the standardized regression equation through by Z′X/(n− 1), as suggested:

1
n− 1Z′Xzy = 1

n− 1Z′XZXb∗ + 1
n− 1Z′Xe∗

Now examine the first element on the left-hand side of the equation, which multiplies the first row
of Z′X (i.e., the first column of ZX) into zy:

1
n− 1

n∑
i=1

Zi1Ziy = 1
n− 1

n∑
i=1

Xi1 − X̄1

S1
× Yi − Ȳ

Sy

=

∑
(Xi1 − X̄1)(Yi − Ȳ )

n− 1
S1Sy

= S1y

S1Sy

= r1y

Similarly, the remaining elements of 1
n−1Z′Xzy are correlations between the rest of the Xs and Y ,

and 1
n−1Z′XZX is the correlation matrix among the Xs. The second term on the right, 1

n−1Z′Xe∗,
isn’t a vector of correlations because e∗ isn’t a standardized variable (recall that it’s scaled by Sy
rather than by SE), but the term is 0 because, as a scalar multiple of the residuals e, the scaled
residuals e∗ have 0 cross-products with the standardized explanatory variables. Thus

rXy = RXXb∗ + 0
b∗ = R−1

XXrXy

(b) I did the computations in R:
> R <- matrix (0, 5, 5)
> R[upper .tri(R)] <- c(

Copyright © 2021 by John Fox. 24 All rights reserved.



+ .516 ,
+ .453 , .438 ,
+ .332 , .417 , .538 ,
+ .322 , .405 , .596 , .541
+ )

> R <- R + t(R)
> diag(R) <- 1
> R

[,1] [,2] [,3] [,4] [,5]
[1,] 1.000 0.516 0.453 0.332 0.322
[2,] 0.516 1.000 0.438 0.417 0.405
[3,] 0.453 0.438 1.000 0.538 0.596
[4,] 0.332 0.417 0.538 1.000 0.541
[5,] 0.322 0.405 0.596 0.541 1.000

> b <- as. vector ( solve(R[1:4 , 1:4]) %*% R[1:4 , 5])
> names(b) <- c("F's Ed", "F's Occ", "R's Ed", "R's 1st Job")
> b

F's Ed F's Occ R's Ed R's 1st Job
-0.01394205 0.12052602 0.39830303 0.28108238

The slope for father’s education is not only very small but negative! No, this doesn’t necessarily
imply that father’s education is unimportant as a cause of respondent’s occupational status, just
that it isn’t an important direct cause, holding father’s occupational status, respondent’s education,
and the status of the respondent’s first job constant. These other explanatory variables could very
well be positively affected by father’s education, which could therefore have an important indirect
effect on respondent’s occupational status.

(c)* Following the hint,

1
n− 1z′yzy = 1

n− 1z′yZXb∗ + 1
n− 1z′ye∗

1 = r′yXb∗ + 1
n− 1(ẑy + e∗)′e∗

1 = r′yXb∗ + 1
n− 1e∗′e∗

I used the facts that the sum of cross products of standardized variables divided by n − 1 is
their correlation, and that the fitted values in least-squares regression are uncorrelated with the
residuals.

The last line of the equation shows the proportional division of the variance of z∗y into “explained”
and residual components. We can alternatively write

1
n− 1z′yZXb∗ = 1

n− 1z′yẑy

= 1
n− 1(ẑy + e∗)′ẑy

= 1
n− 1 ẑ′yẑy

The explained component, 1
n−1 ẑ′yẑy = r′yXb∗ is the squared multiple correlation, R2.

Applied to Blau and Duncan’s regression,
> R[1:4 , 5] %*% b

Copyright © 2021 by John Fox. 25 All rights reserved.



[,1]
[1,] 0.4337779

That is, R2 = .434.

Exercise 9.7*

The matrix AX is of order (k + 1 × k + 1). Let the first row of this matrix be given by w′0 ≡
[w10, w11, . . . , w1k]. If β = [1, 0, . . . , 0]′, then w′0β = w10, and so the first element of w′0 must be 0.
Similarly if β = [0, 1, . . . , 0]′, then w′0β = w11, and the second element of w′0 must be 0. Setting each
remaining element of β to 0 in turn similarly implies that all of the elements of w′0 must be 0. But
there’s nothing special about w′0; we could repeat this argument for each subsequent row w′j of AX,
i = 1, . . . , k, and so AX = 0

Exercise 9.9*

The likelihood is
L(β, σ2

ε) = 1
(2πσ2

ε)n/2
exp

[
− (y−Xβ)′(y−Xβ)

2σ2
ε

]
The MLEs are β̂ = (X′X)−1X′y and σ̂2

ε = e′e/n, where the residuals e = y−Xβ̂. Thus, at the MLEs,

L(β, σ2
ε) = 1(

2π e′e
n

)n/2 exp
[
− e′e

2e′e
n

]

=
(

2πe′e
n

)−n/2
exp

(
−n2

)
=
(

2πee′e
n

)−n/2
Exercise 9.11*

A simple approach is to eliminate the intercept A by subtracting their means from Y and the Xs. Then
letting y∗i ≡ Yi − Ȳ and x∗ij ≡ xij − x̄j , j = 1, 2:

y∗i = B∗1x
∗
ij +B∗2x

∗
i2 + Ei

and [
B∗1
B∗2

]
= b1 = (X∗′X∗)−1X∗′y∗

=
[ ∑

x∗2i1
∑
x∗i1x

∗
i2∑

x∗i1x
∗
i2

∑
x∗2i2

]−1 [∑
x∗i1y

∗
i∑

x∗i2y
∗
i

]

So, V11 = [(X∗′X∗)−1]−1 = X∗′X∗.

The generalization to any number of Xs is immediate, noting that

y∗i = B∗1x
∗
ij +B∗2x

∗
i2 + · · ·+B∗kx

∗
ik + Ei

Exercise 9.13

Here’s a graph similar to Figure 9.2 showing both the confidence interval for β1 + β2 and for β1 − β2.

Copyright © 2021 by John Fox. 26 All rights reserved.



β1

β2

(1, 1)

  (B1, B2)

 Confidence
 interval for  β1 + β2

(1, −1)

 Confidence
 interval for  β1 − β2

Given the positive correlation of X1 and X2, and the consequent negative tilt in the confidence ellipse
for β1 and β2, the shadow of the ellipse on the line through (1, 1), giving the confidence interval for
β1 + β2 is narrower than the shadow on the line through (1,−1) giving the confidence interval for
β1 − β2. Thus β1 + β2 is estimated more precisely than β1 − β2.

If X1 and X2 were negatively correlated, then the confidence ellipse would have a positive tilt, and
a larger shadow on the line through (1, 1) than on the line through (1,−1), implying that β1 − β2 is
estimated more precisely than β1 + β2.

Exercise 9.15

(a) The row basis of the of the full-rank model matrix is

XB =


1 1 1 0 1 0
1 1 0 1 0 1
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 0 0


(b) I computed X−1

B using R:
> X_B <- matrix (c(
+ 1, 1, 1, 0, 1, 0,
+ 1, 1, 0, 1, 0, 1,
+ 1, 1, 0, 0, 0, 0,
+ 1, 0, 1, 0, 0, 0,

Copyright © 2021 by John Fox. 27 All rights reserved.



+ 1, 0, 0, 1, 0, 0,
+ 1, 0, 0, 0, 0, 0
+ ), 6, 6, byrow=TRUE)

> X_B
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 1 1 0 1 0
[2,] 1 1 0 1 0 1
[3,] 1 1 0 0 0 0
[4,] 1 0 1 0 0 0
[5,] 1 0 0 1 0 0
[6,] 1 0 0 0 0 0

> solve(X_B)
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0 0 0 1
[2,] 0 0 1 0 0 -1
[3,] 0 0 0 1 0 -1
[4,] 0 0 0 0 1 -1
[5,] 1 0 -1 -1 0 1
[6,] 0 1 -1 0 -1 1

Thus,

βF = X−1
B µ

µ
α1
β1
β2
γ11
γ22

 =


0 0 0 0 0 1
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 −1
1 0 −1 −1 0 1
0 1 −1 0 −1 1




µ11
µ12
µ13
µ21
µ22
µ23


Consequently, α1 = µ13 − µ23 and the corresponding null hypothesis is H0: µ13 − µ23. Similarly
β1 = µ21−µ23 and β2 = µ22−µ23, so the corresponding null hypothesis is H0: µ21 = µ23, µ22 = µ23.
These hypotheses are sensible, in that they test for specific differences across the levels of each
factor within the last level of the other factor, but they aren’t what we would normally think of as
tests of main effects.

(c) I did the computations in R, but rather than allowing the lm() function to construct regressors for
factors automatically, as is normal, I instead created the requisite regressors in each case manually.
Otherwise lm() resists fitting models that violate marginality.
> library (" carData ") # for Moore data set

> # simple function to compute incremental SSs
> SS <- function (model1 , model2 ){
+ RSS1 <- sum( residuals ( model1 )^2)
+ RSS2 <- sum( residuals ( model2 )^2)
+ abs(RSS1 - RSS2)
+ }

> # using " deviation " (" effect ") coding

> A1e <- with(Moore , ifelse ( partner . status == "low", 1, -1))
> B1e <- with(Moore , ifelse ( fcategory == "low", 1,
+ ifelse ( fcategory == "high", -1, 0)))
> B2e <- with(Moore , ifelse ( fcategory == " medium ", 1,
+ ifelse ( fcategory == "high", -1, 0)))

Copyright © 2021 by John Fox. 28 All rights reserved.



> C11e <- A1e*B1e
> C12e <- A1e*B2e

> # SS(A | B)
> SS(lm( conformity ~ B1e + B2e , data=Moore),
+ lm( conformity ~ A1e + B1e + B2e , data=Moore ))
[1] 212.2138

> # SS(B | A)
> SS(lm( conformity ~ A1e , data=Moore),
+ lm( conformity ~ A1e + B1e + B2e , data=Moore ))
[1] 11.6147

> # SS(C | A, B)
> SS(lm( conformity ~ A1e + B1e + B2e , data=Moore),
+ lm( conformity ~ A1e + B1e + B2e + C11e + C12e , data=Moore ))
[1] 175.4889

> # SS(A | B, C)
> SS(lm( conformity ~ B1e + B2e + C11e + C12e , data=Moore),
+ lm( conformity ~ A1e + B1e + B2e + C11e + C12e , data=Moore ))
[1] 239.5624

> # SS(B | A, C)
> SS(lm( conformity ~ A1e + C11e + C12e , data=Moore),
+ lm( conformity ~ A1e + B1e + B2e + C11e + C12e , data=Moore ))
[1] 36.01871

> # using 0, 1 "dummy" coding :
>
> A1d <- with(Moore , ifelse ( partner . status == "low", 1, 0))
> B1d <- with(Moore , ifelse ( fcategory == "low", 1, 0))
> B2d <- with(Moore , ifelse ( fcategory == " medium ", 1, 0))
> C11d <- A1d*B1d
> C12d <- A1d*B2d

> # SS*(A | B) [ matches SS(A | B)]
> SS(lm( conformity ~ B1d + B2d , data=Moore),
+ lm( conformity ~ A1d + B1d + B2d , data=Moore ))
[1] 212.2138

> # SS*(B | A) [ matches SS(B | A)]
> SS(lm( conformity ~ A1d , data=Moore),
+ lm( conformity ~ A1d + B1d + B2d , data=Moore ))
[1] 11.6147

> # SS*(C | A, B) [ matches SS(C | A, B)]
> SS(lm( conformity ~ A1d + B1d + B2d , data=Moore),
+ lm( conformity ~ A1d + B1d + B2d + C11d + C12d , data=Moore ))
[1] 175.4889

> # SS*(A | B, C) [doesn 't match SS(A | B, C)]
> SS(lm( conformity ~ B1d + B2d + C11d + C12d , data=Moore),
+ lm( conformity ~ A1d + B1d + B2d + C11d + C12d , data=Moore ))
[1] 2.20119

> # SS*(B | A, C) [doesn 't match SS(B | A, C)]
> SS(lm( conformity ~ A1d + C11d + C12d , data=Moore),
+ lm( conformity ~ A1d + B1d + B2d + C11d + C12d , data=Moore ))

Copyright © 2021 by John Fox. 29 All rights reserved.



[1] 89.67408

First, the results match those in Table 8.4 (page 175), within rounding error. Second, the results
demonstrate the equalities and inequalities specified in the question.

(d) There is a wide variety of statistical software capable of performing two-way ANOVA and different
readers will have access to different software, so I’ll leave this one to you!

Exercise 9.17

If the purpose of the study were to determine the effect of simply providing a voucher, rather than
the effect of actual private-school attendance, then there’s no need to use an instrumental variable,
and because of randomization the experiment can answer the question directly. From a public-policy
perspective, this question may indeed be of more direct interest, because a social program could provide
vouchers to students but, presumably, couldn’t make the voucher recipients attend private schools nor
prevent non-recipients from attending them.

Exercise 9.19

We probably prefer to use Equation 9.30, for the estimated asymptotic covariance matrix of the
coefficients, rather than Equation 9.29.

When Z = X Equation 9.28 becomes

bIV = (X′X)−1X′y

which is the formula for the least-squares estimator.

Similarly, Equation 9.30 becomes

V̂(bIV) = σ̂2
ε(X′X)−1(X′X)(X′X)−1

= σ̂2
ε(X′X)−1

This equation is the same as V (b) for the least-squares estimator if we use S2
E =

∑
E2
i /(n− k − 1) to

estimate the error variance rather than the maximum-likelihood estimator σ̂2
ε =

∑
E2
i /n.

Copyright © 2021 by John Fox. 30 All rights reserved.



Exercises for Chapter 10
Exercise 10.1

The scatterplot and the vector diagram:

0 1 2 3 4 5

0
1

2
3

4
5

(a) scatterplot

X

Y

0 1 2 3 4 5

0
1

2
3

4
5

(b) vector diagram

Obervation 1

O
bs

er
va

tio
n 

2

x

y

Exercise 10.3*

That e · ŷ is 0 is probably obvious from the geometry, but it is also easy to show:

e · ŷ = e · (A1n +Bx)
= Ae · 1n +Be · x
= A× 0 +B × 0
= 0

Exercise 10.5

x∗ · y∗ = x∗ · (ŷ∗ + e)
= x∗ · ŷ∗ + x∗ · e
= x∗ · ŷ∗ + 0
= x∗ · ŷ∗

Exercise 10.7

I used R to draw the vector diagrams.

(a) The {x∗1,x∗2} plane:
> library (" matlib ")
> library ("MASS")
> library (" carData ")

> m <- lm( prestige ~ income + education , data= Duncan )
> summary (m)

Call:

Copyright © 2021 by John Fox. 31 All rights reserved.



lm( formula = prestige ~ income + education , data = Duncan )

Residuals :
Min 1Q Median 3Q Max

-29.538 -6.417 0.655 6.605 34.641

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -6.06466 4.27194 -1.420 0.163
income 0.59873 0.11967 5.003 1.05e -05 ***
education 0.54583 0.09825 5.555 1.73e -06 ***
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13.37 on 42 degrees of freedom
Multiple R- squared : 0.8282 , Adjusted R- squared : 0.82
F- statistic : 101.2 on 2 and 42 DF , p-value: < 2.2e -16

> len <- function (x) sqrt(sum ((x - mean(x ))^2))

> me <- lm( education ~ income , data= Duncan )
> x1 <- c(x=len( Duncan $ income ), y=0)
> x2 <- c(x=len( fitted (me)), y=len( residuals (me )))
> all. equal (sqrt(sum(x2 ^2)) , len( Duncan $ education )) # check
[1] TRUE
> b <- coef(m)
> B1x1 <- b[2]*x1
> B2x2 <- b[3]*x2
> yhat <- B1x1 + B2x2

> Vectors <- rbind(
+ x1 , x2 , B1x1 , B2x2 , yhat
+ )

> eqscplot (c(0, 250) , c(-50, 200) , type="n", xlab="", ylab="")

> vectors (Vectors ,
+ labels =c( expression (x[1]^"*"),
+ expression (x[2]^"*"),
+ expression (B[1]*x[1]^"*"),
+ expression (B[2]*x[2]^"*"),
+ expression (hat(y)^"*")),
+ pos.lab=c(4, 4, 1, 3, 4))
> lines(c(yhat [1] , B1x1 [1]) , c(yhat [2], B1x1 [2]) , lty =2)
> lines(c(yhat [1] , B2x2 [1]) , c(yhat [2], B2x2 [2]) , lty =2)

> # angle between income and education vectors in degrees
> with(Duncan , 180*acos(cor(income , education ))/pi)
[1] 43.5717
> 180*acos(sum(x1*x2)/sqrt(sum(x1 ^2)*sum(x2 ^2)))/pi # check
[1] 43.5717

Copyright © 2021 by John Fox. 32 All rights reserved.



0 50 100 150 200 250

−
50

0
50

10
0

15
0

20
0

x1
*

x2
*

B1x1
*

B2x2
*

ŷ
*

(b) The {y∗, ŷ∗} plane:
> yhat <- c(len( fitted (m)), 0)
> e <- c(0, len( residuals (m)))
> y <- c(len( fitted (m)), len( residuals (m)))
> Vectors <- rbind(yhat ,
+ e,
+ y)
> eqscplot (c(0, 224) , c(-25, 200) , type="n", xlab="", ylab="")
> vectors (Vectors ,
+ labels =c( expression (hat(y)^"*"),
+ "e",
+ expression (y^"*")),
+ pos.lab=c(4, 3, 4))
> lines(c(e[1], y[1]) , c(e[2] , y[2]) , lty =2)
> lines(c(yhat [1], y[1]) , c(yhat [2], y[2]) , lty =2)

Copyright © 2021 by John Fox. 33 All rights reserved.



0 50 100 150 200 250

0
50

10
0

15
0

20
0

ŷ
*

e
y*

Here’s a 3D vector diagram for Duncan’s regression (not showing the R code):

x1
*x1
*

x2
*

x1
*

x2
*

x1
*

x2
*

y*

x1
*

x2
*

y*

x1
*

x2
*

y*e

x1
*

x2
*

y*e

x1
*

x2
*

ŷ
*

y*e

x1
*

x2
*

ŷ
*

y*e

x1
*

x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

x2
*

B2x2
*

ŷ
*

y*e

B1x1
*

x1
*

Exercise 10.9

(a) Here is the vector diagram:

Copyright © 2021 by John Fox. 34 All rights reserved.



x1
*x1
*

x2
*

x1
*

x2
*

x1
*

x2
*

y*

x1
*

x2
*

y*

x1
*

x2
*

e y*

x1
*

x2
*

e y*

x1
*

x2
*

e

ŷ
*

y*

x1
*

x2
*

e

ŷ
*

y*

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*
x2

*

e

ŷ
*

y*

ey

x1
*

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

x1
*

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

x1
*

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

x1
*

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

x1
*

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

x1
*

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

e1

x1
*

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

e1

x1
*

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

e1

x1
*

e1

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

e1

x1
*

e1

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

ey

e1

x1
*

e1

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

ey

e1

x1
*

e1

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

e

ey

e1

x1
*

e1

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

e

ey

e1

x1
*

e1

ŷ2

*x̂1

*

x2
*

e

ŷ
*

y*

ey

e

ey

e1

x1
*

e1

e1

ey
e

RSSy|12RSS y|2

w

The upper panel shows the 3D vector space generated by the mean-deviation vectors x∗1, x∗2, and
y∗.

• The orthogonal projection of y∗ onto the plane spanned by x∗1 and x∗2 is ŷ∗, and the residual
vector for this regression (i.e., the residuals from the multiple regression of Y on both x1 and
x2) is e. A copy of this vector is moved from the origin so that its tail is at the tip of ŷ∗.
(Recall that a vector is uniquely defined by its direction and length.)

• The orthogonal projection of y∗ onto x∗2 alone is ŷ∗2, and (as specified in the exercise) the
residual vector for this regression is ey, shown in magenta. A copy of ey is moved so that its
tail is at the tip of ŷ∗2.

• The orthogonal projection of x∗1 onto x∗2 is x̂∗1, and the residual vector for this regression (also
as specified in the exercise) is e1, shown in magenta, which lies in the plane spanned by x∗1
and x∗2; for reasons to be made clear shortly, a copy of this residual vector is moved so that
its tail is also at the tip of ŷ∗2.

Notice that when e1, which is orthogonal to x∗2, is positioned so that its tail is at the tip of ŷ∗2,
the vector goes through the tip of ŷ∗, because (as explained in the discussion of Figure 10.10
on page 255) the simple regression (i.e, orthogonal projection) of the multiple-regression fitted
values ŷ∗ on x∗2 yields the simple-regression slope (say, B) for the regression of Y on x2 alone.

The lower panel of the diagram shows the 2D subspace generated by the residual vectors e, ey,
and e1, which lie in a common plane. As depicted, the orthogonal projection of ey onto e1 forms
a right triangle with ey as the hypotenuse and e as one side. The squared length of e is the
residual sum of squares for the multiple regression, labeled RSSy|12. The squared length of ey
is the residual sum of squares for the regression of Y on X2 alone, RSSy|2. By the Pythagorean
theorem, the squared length of the third side of the triangle, RSSy|2 − RSSy|12, is the incremental
sum of squares due to the introduction of X1 into the regression after X2.

(b)* The cosine of the angle w separating the residual vectors ey and e1 is the partial correlation ry1|2.

Copyright © 2021 by John Fox. 35 All rights reserved.



Thus, the squared partial correlation is

r2
y1|2 = cos2 w

=
RSSy|2 − RSSy|12

RSSy|2

= 1−
RSSy|12

RSSy|2

We then have

F0 =
(n− k − 1)r2

y1|2

1− r2
y1|2

=
(n− 3)

(
1−

RSSy|12

RSSy|2

)
RSSy|12

RSSy|2

Multiplying the numerator and denominator by RSSy|2 and dividing both by n− 3 produces the
usual form of the incremental F -test statistic for X1 after X2:

F0 =
RSSy2 − RSSy|12

RSSy|12

n− 3

This result is intuitively plausible because (as shown in Exercise 5.8(b)), the partial correlation
ry1|2 is nonzero only when the multiple regression coefficient B1 of X1 is nonzero.

Exercise 10.11*

We have

z
(n−k−1×1)

= G
(n−k−1×n)

e
(n×1)

GG′ = In−k−1) (G is orthonormal)
GX = 0

(n−k−1×k+1)
(G is orthogonal to X)

It’s simple to establish the properties in the exercise: First,

z = G(y−Xb)
= Gy−GXb
= Gy− 0b
= Gy

Next,

E(z)
(n−k−1×1)

= G
(n−k−1×n)

E(e)
(n×1)

= G0
= 0

(n−k−1×1)

Copyright © 2021 by John Fox. 36 All rights reserved.



And finally,

V (z)
(n−k−1×n−k−1)

= G
(n−k−1×n)

V (e)
(n×n)

G′
(n×n−k−1)

= Gσ2
εInG′

= σ2
εGG′

= σ2
εIn−k−1

Copyright © 2021 by John Fox. 37 All rights reserved.



Exercises for Chapter 11
Exercise 11.1*

In simple regression, the sum of squares and products matrix for X is

X′X =
[

n
∑
Xj∑

Xj

∑
X2
j

]
with inverse

(X′X)−1 = 1
n
∑
X2
j − (

∑
Xj)2

[ ∑
X2
j −

∑
Xj

−
∑
Xj n

]
= 1
n
∑
X2
j − (

∑
Xj)2

[∑
(Xj − X̄)2 − nX̄2 −nX̄

−nX̄ n

]

=

 1
n + X̄2∑

(Xj−X̄)2 − X̄∑
(Xj−X̄)2

− X̄∑
(Xj−X̄)2

1∑
(Xj−X̄)2



Then

x′i(X′X)−1xi = [1, Xi]

 1
n + X̄2∑

(Xj−X̄)2 − X̄∑
(Xj−X̄)2

− X̄∑
(Xj−X̄)2

1∑
(Xj−X̄)2

[ 1
Xi

]

= 1
n

+ X̄2∑
(Xj − X̄)2

− 2 XiX̄

n
∑

(Xj − X̄)2
+ X2

i∑
(Xj − X̄)2

= 1
n

+ X̄2 − 2XiX̄ +X2
i∑

(Xj − X̄)2

= 1
n

+ (Xi − X̄)2∑
(Xj − X̄)2

Exercise 11.3*

The X matrix for one-way ANOVA is the full-rank model matrix XF in Equation 9.4 on page 205.
Labeling the rows and columns of the sum of squares and product matrix by the parameters to which
they pertain, we have

X′FXF =



(µ) (α1) (α2) · · · (αm−1)
(µ) n 0 0 · · · 0
(α1) 0 2n′ n′ · · · n′

(α2) 0 n′ 2n′ · · · n′

...
(αm−1) 0 n′ n′ · · · 2n′


Here, there are n′ ≡ n/m observations in each of the m groups.

Because there are equal numbers of observations in the groups, the columns in the model matrix XF ,
after the first column for the general mean µ, all sum to 0 and hence have 0 means, so if we subtract
the mean from Y , all of the variables are in mean-deviation form, and the intercept is removed from the

Copyright © 2021 by John Fox. 38 All rights reserved.



model. The sum of squares and products corresponding to the mean-deviation model matrix X∗F is thus

X∗
′

F X∗F =


(α1) (α2) · · · (αm−1)

(α1) 2n′ n′ · · · n′

(α2) n′ 2n′ · · · n′

...
(αm−1) n′ n′ · · · 2n′



= n′


(α1) (α2) · · · (αm−1)

(α1) 2 1 · · · 1
(α2) 1 2 · · · 1
...

(αm−1) 1 1 · · · 2


The inverse of X∗′F X∗F is of the form

(X∗
′

F X∗F )−1 =


(α1) (α2) · · · (αm−1)

(α1) a b · · · b
(α2) b a · · · b
...

(αm−1) b b · · · a


that is, with equal diagonal elements (say a) and equal off-diagonal elements (say b), where the values
of a and b need not concern us.

We know, moreover (from page 290), that the hat-values for the original model hi = 1/n+ h∗i , where
the h∗i are the hat-values for the model in mean-deviation form, and so if the latter are all equal, so are
the former.

Now consider an observation i in the first group, for which x′i = [1, 1, 0, . . . , 0] and x′∗i = [1, 0, . . . , 0];
then

h∗i = x′∗i (X∗
′

F X∗F )−1x∗i = a

This pattern reproduces itself for observations in all the other groups—that is, for an observation i in
any group, h∗i = a—and thus all of the hatvalues are equal.

Perhaps the simplest way to see that this result applies to balanced (i.e., equal-cell-frequencies) ANOVA
with any number of factors is to recall that the fitted values Ŷ for a two-way or higher-way ANOVA
are just the cell means, and so, for example, a two-way ANOVA model is equivalent to the cell-means
model Yijk = µjk + εijk, which, in turn is equivalent to a one-way ANOVA over the cells—in effect,
“raveling” the two-way (or higher-way) table of means into a vector.

Exercise 11.5*

The following graph shows the vector geometry of the AV plot for X1 in the regression of Y on X1 and
X2:

Copyright © 2021 by John Fox. 39 All rights reserved.



x1
*x1
*

x2
*

x1
*

x2
*

x1
*

x2
*

y*

x1
*

x2
*

y*

x1
*

x2
*

ŷ
*

y*

x1
*

x2
*

ŷ
*

y*

x1
*

x2
*

ŷ
*

y*

B1x1
*

x1
*

x2
*

ŷ
*

y*

B1x1
*

x1
*

x2
*

ŷ
*

y*

B1x1
*

x1
*

x2
*

ŷ
*

y*

B1x1
*

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x(1)

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x(1)

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x(1)

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x(1)

x2
*

ŷ
*

y*

B1x1
*

y(1)

x1
*

x(1)

x2
*

ŷ
*

y*

B1x1
*

y(1)

B1x
(1)

x1
*

x(1)

x2
*

ŷ
*

y*

B1x1
*

y(1)

B1x
(1)

x1
*

x(1)

x2
*

ŷ
*

y*

B1x1
*

y(1)

B1x
(1)

x1
*

x(1)

x2
*

ŷ
*

y*

B1x1
*

y(1)

B1x
(1)

x1
*

x(1)

The two residual vectors y(1) and x(1), respectively for the regressions of each of y and x1 on x2, are
drawn in magenta. Embarrassingly, I don’t see a direct geometric proof that the regression coefficient
implied by the orthogonal projection of y(1) onto x(1) (the magenta vector B1x(1) in the diagram) is
the multiple-regression slope B1. Here, however, is a mostly algebraic proof, which uses some geometric
ideas, and that has the advantage of generalizing to the next exercise:

First, form the normal equations for the regression of y∗ on x∗1 and x∗2:

x∗′1 x∗1B1 + x∗′1 x∗2B2 = x∗′1 y∗

x∗′2 x∗1B1 + x∗′2 x∗2B2 = x∗′2 y∗

Then solve the second normal equation for B2:

B2 = (x∗′2 x∗2)−1x∗′2 y∗ − (x∗′2 x∗2)−1x∗′2 x∗1B1

Next, substitute for B2 in the first normal equation:

x∗′1 x∗1B1 + x∗′1 x∗2[(x∗′2 x∗2)−1x∗′2 y∗ − (x∗′2 x∗2)−1x∗′2 x∗1B1] = x∗′1 y∗

After some rearrangement isolating B1 on the left-hand side, this equation becomes

x∗′1 [In − x∗2(x∗′2 x∗2)−1x∗′2 ]x∗1B1 = x∗′1 [In − x∗2(x∗′2 x∗2)−1x∗′2 ]y∗

The matrix H∗2 ≡ x∗2(x∗′2 x∗2)−1x∗′2 is the hat-matrix for the regression (i.e., orthogonal projection) of a
mean-deviation variable (here x∗1 or y∗) on x∗2. We can therefore re-express the last equation as

x∗′1 (In −H∗2)x∗1B1 = x∗′1 (In −H∗2)y∗

and so
B1 = x∗′1 (In −H∗2)y∗

x∗′1 (In −H∗2)x∗1
Similarly, In −H∗2 projects a mean-deviation vector (again, here x∗1 or y∗) onto the subspace of the
(n− 1)-dimensional mean-deviation vector space orthogonal to x∗2 and so produces residuals from a

Copyright © 2021 by John Fox. 40 All rights reserved.



regression on x∗2. Using the notation of the exercise, therefore, y(1) = (In −H∗2)y∗ (the residuals from
the regression of y∗ on x∗2), and x(1) = (In −H∗2)x∗1 (the residuals from the regression of x∗1 on x∗2).

Thus,

B1 = x∗′1 y(1)

x∗′1 x(1)

= (x̂∗′1 + x(1)′)y(1)

(x̂∗′1 + x(1)′)x(1)

= x(1)′y(1)

x(1)′x(1)

In the second line of the equation, the vector x̂∗1 represents the fitted values from the regression of x∗1
on x∗2; as a consequence x̂∗1 lies in the subspace spanned by x∗2, and it is orthogonal to the residual
vectors y(1) and x(1), justifying its elimination from the last line of the equation (because x̂∗′1 y(1) and
x̂∗′1 x(1) are both 0).

Finally, we recognize that the last line of the equation is the slope coefficient for the regression of y(1)

on x(1), completing the proof.

Exercise 11.7*

We have from the text (on page 292) that

e0 = e + X(X′X)−1L′u

where
u = [L(X′X)−1L′]−1Lb

Note: The left square bracket is missing in the equation for u in the text (perhaps corrected in your
printing of the book).

Consequently,
e0 − e = X(X′X)−1L′[L(X′X)−1L′]−1Lb

and

||e0 − e||2 = (e0 − e)′(e0 − e)
= {X(X′X)−1L′[L(X′X)−1L′]−1Lb}′X(X′X)−1L′[L(X′X)−1L′]−1Lb
= b′L′[L(X′X)−1L′]−1L(X′X)−1X′X(X′X)−1L′[L(X′X)−1L′]−1Lb
= b′L′[L(X′X)−1L′]−1L(X′X)−1Ik+1L′[L(X′X)−1L′]−1Lb
= b′L′[L(X′X)−1L′]−1IqLb
= b′L′[L(X′X)−1L′]−1Lb

Copyright © 2021 by John Fox. 41 All rights reserved.



Exercises for Chapter 12
Exercise 12.1*

Consider Figure 10.8 on page 253. We know that R2 = r2
y∗,̂y∗

= cos2W . Similarly the squared
correlation between the residuals and the response is r2

e,y∗ = cos2(90◦ − W ) = sin2W . Because
cos2W + sin2W = 1, it follows that r2

e,y∗ = 1−R2 and that re,y∗ =
√

1−R2.

Exercise 12.3*

Note: There are some corrections to this exercise in the errata for the text; these errors may be fixed in
your printing of the book.

(a) The (correct) likelihood

L(Σ, σ2
ε) = 1

(2π)n/2|Σ|1/2
exp

[
−1

2(y−Xβ)′Σ−1(y−Xβ)
]

follows directly from the observation that according to the regression model, y is multivariately
normally distributed with mean vector Xβ and covariance matrix Σ. (See on-line Appendix D,
Section D.3.5, for the formula of the multivariate-normal distribution.)

(b) We’ll find the following facts useful:

• As stated in the problem, Σ = σ2
ε × diag{1/w2

1, . . . , 1/w2
n} ≡ σ2

εW−1 .

• Thus Σ−1 = 1
σ2
ε
W.

• Because Σ is diagonal, its determinant is simply the product of its diagonal elements, |Σ| =∏n
i=1

σ2
ε

w2
i
, and, consequently, loge |Σ| =

∑n
i=1 loge

σ2
ε

w2
i
. Although I could simplify the expression

for the log-determinant, it will be helpful to have it in this form.

The log-likelihood is

loge L(β,Σ) = −n2 loge 2π − 1
2 loge |Σ| −

1
2(y−Xβ)′Σ−1(y−Xβ)

= −n2 loge 2π − 1
2

n∑
i=1

loge
σ2
ε

w2
i

− 1
2σ2

ε

(y−Xβ)′W(y−Xβ)

I’ll next differentiate the log-likelihood with respect to the regression coefficients β:

∂ loge L(β,Σ)
∂β

= −2
(
− 1

2σ2
ε

)
(X′WXβ −X′Wy)

Setting the vector partial derivative to 0 and dividing by σ2
ε yields

X′WXβ̂ −X′Wy = 0

X′WXβ̂ = X′Wy

β̂ = (X′WX)−1 X′Wy

as long as the weighted sum-of-squares-and-products matrix X′WX is nonsingular. The MLE
of β is therefore the weighted-least-squares estimator.

Now that β̂ is known, we can write the last term in the maximized log-likelhood as

− 1
2σ2

ε

(y−Xβ̂)′W(y−Xβ̂) = − 1
2σ2

ε

e′We

= − 1
2σ2

ε

n∑
i=1

e2
iw

2
i

Copyright © 2021 by John Fox. 42 All rights reserved.



where e ≡ y−Xβ̂ is the residual vector and the transition to the second line of the equation
is justified by remembering the W is diagonal with diagonal elements w2

i .

I next differentiate the rewritten log-likelihood with respect to σ2
ε :

d loge L
dσ2

ε

= − n

2σ2
ε

+
∑n
i=1 e

2
iw

2
i

2(σ2
ε)2

Setting the derivative to 0 and solving for σ̂2
ε produces the (correct) result, σ̂2

ε = (
∑n
i=1 e

2
iw

2
i )/n.

(c) The only term in the log-likelihood that contributes to the MLE of β is the third term. Moreover,
as we’ve seen, we can get rid of the error variance σ2

ε in the denominator of this term after setting
the vector partial derivative with respect to β to 0, and we also already showed that the rest of
the third term is

∑
w2
i e

2
i . Thus, the MLE β̂ minimizes the weighted sum of squares.

(d) We have β̂ = (X′WX)−1 X′Wy and so, taking advantage of the symmetry of W and of (X′WX)−1,

V (β̂) = (X′WX)−1 X′WV (y)[(X′WX)−1 X′W]′

= (X′WX)−1 X′Wσ2
εW−1WX (X′WX)−1

= σ2
ε (X′WX)−1

The estimated asymptotic covariance matrix V̂(β̂) follows from substituting the MLE of the error
variance σ̂2

ε for σ2
ε .

Exercise 12.5*

(a) As explained in Section 6.1.2 (page 109), the OLS estimator of β is

B =
n∑
i=1

miYi

mi = xi − x̄∑n
j=1(xj − x̄)2

so

V (B) =
n∑
i=1

m2
iV (Yi)

=
n∑
i=1

[
xi − x̄∑n

j=1(xj − x̄)2

]2

σ2
i

=
∑n
i=1(xi − x̄)2σ2

i∑n
i=1(xi − x̄)2

Note: The question is slightly inconsistent in using xi (i.e., fixed xs) in the model and Xi (random
Xs) in the formula for V (B). Here, I use xi consistently.

Deriving the analogous formula for the WLS estimator β̂ is more tedious. One approach is to
specialize V (β̂) = σ2

ε(X′WX)−1 to simple regression. We have

X′WX =
[

1 · · · 1
x1 · · · xn

]w
2
1 · · · 0
...

. . .
...

0 · · · w2
n


1 x1
...

...
1 xn


=
[ ∑

w2
i

∑
w2
i xi∑

w2
i xi

∑
w2
i x

2
i

]

Copyright © 2021 by John Fox. 43 All rights reserved.



To find V (β̂) we need the second diagonal element of (X′WX)−1, which is

(X′WX)−1
22 =

∑
w2
i

(
∑
w2
i )(
∑
w2
i x

2
i )− (

∑
w2
i xi)2

and so

V (β̂) = σ2
ε

∑
w2
i

(
∑
w2
i )(
∑
w2
i x

2
i )− (

∑
w2
i xi)2

= σ2
ε∑

w2
i x

2
i −

∑
w2
i

(∑
w2
i xi∑
w2
i

)2

To complete the proof, I need to show that the denominator on the right-hand side of the last line
of the equation is

∑
w2
i (xi − x̃)2. Expanding the latter,∑
w2
i (xi − x̃)2 =

∑
w2
i x

2
i − 2x̃

∑
w2
i xi + x̃2

∑
w2
i

=
∑

w2
i x

2
i − 2x̃2

∑
w2
i + x̃2

∑
w2
i

=
∑

w2
i x

2
i − x̃2

∑
w2
i

=
∑

w2
i x

2
i −

(∑
w2
i xi∑
w2
i

)2∑
w2
i

(b) The simplest approach is to set the common error standard deviation parameter σ = 1, so that
σi = xi. I wrote a simple R program to compute the relative precision of the OLS estimator and
then applied it to the various combinations of a and n values:
relPrecision <- function (a, n){

x <- seq (1, a, length =n)
sigma.sq <- x^2
xbar <- mean(x)
xtilde <- weighted .mean(x, x^2)
vols <- sum(sigma.sq*(x - xbar )^2)/(( sum ((x - xbar )^2))^2)
vwls <- 1/(sum ((x^2)*(x - xtilde )^2))
sqrt(vwls/vols)

}

as <- as. integer (c(2, 3, 5, 10))
ns <- as. integer (c(5, 10, 20, 50, 100))
rel.prec <- matrix (0, length (as), length (ns))
rownames (rel.prec) <- as. character (as)
colnames (rel.prec) <- as. character (ns)

for (a in as){
for (n in ns){

rel.prec[as. character (a), as. character (n)] <- relPrecision (a, n)
}

}

The results, saved in rel.prec, are as follows:

n
a 5 10 20 50 100
2 0.452 0.449 0.448 0.448 0.448
3 0.259 0.255 0.255 0.254 0.254
5 0.117 0.115 0.114 0.114 0.114

10 0.035 0.034 0.034 0.034 0.034

Copyright © 2021 by John Fox. 44 All rights reserved.



The relative precision of the OLS estimator declines slightly, but only slightly, as sample size grows,
but it declines dramatically as the ratio of the largest to smallest error standard deviation grows,
from a little less than half when this ratio is 2 to less than 4% when the ratio is 10.

(c) First, the numeric results: As before, I wrote a simple R program to do the calculations and then
applied it to the various combinations of ratios of largest to smallest error standard deviations and
sample sizes:
relBias <- function (a, n){

x <- seq (1, a, length =n)
sigma.sq <- x^2
sigma.sq.bar <- mean(sigma.sq)
xbar <- mean(x)
xtilde <- weighted .mean(x, x^2)
true.var.ols <- sum(sigma.sq*(x - xbar )^2)/

(( sum ((x - xbar )^2))^2)
E.usual.var.ols <- (sigma.sq.bar/sum ((x - xbar )^2)) -

(sum ((x - xbar )^2*(sigma.sq - sigma.sq.bar )))/
((n - 2)*(sum ((x - xbar )^2)^2))

sqrt(E.usual.var.ols/true.var.ols)
}

rel.bias <- matrix (0, length (as), length (ns))
rownames (rel.bias) <- as. character (as)
colnames (rel.bias) <- as. character (ns)

for (a in as){
for (n in ns){

rel.bias[as. character (a), as. character (n)] <- relBias (a, n)
}

}

I called the program relBias() because the focus is on the relative bias of the usual OLS coefficient
standard error. The results, saved in rel.bias are as follows:

n
a 5 10 20 50 100
2 0.976 0.982 0.984 0.985 0.986
3 0.951 0.962 0.966 0.969 0.970
5 0.922 0.938 0.945 0.949 0.951

10 0.895 0.916 0.926 0.931 0.932

Thus, the downwards bias (i.e., exaggerated precision) of the usual OLS standard error is greatest at
small samples sizes and large ratios of biggest to smallest error variances, but under the conditions
of this problem, the relative bias never gets very large.

Combining the results of parts (b) and (c) of the problem, under these circumstances, the robustness
of efficiency of the OLS estimator is sensitive to non-constant error variance but its robustness of
validity is not.

Now let’s return to the formula for E[V̂ (B)]. In stating the exercise, and in the R code given
above, I used a result from Kmenta (1986, page 276–278). His derivation is fairly lengthy and
dense, and rather than recapitulate it here, I’ll instead derive a simpler, equivalent, formula.

The standard formula for the estimated variance of the simple-regression slope B, assuming

Copyright © 2021 by John Fox. 45 All rights reserved.



constant error variance, is (see Section 6.1.3, page 111)

V̂ (B) = S2
E∑

(xi − x̄)2

=
∑
E2
i

(n− 2)
∑

(xi − x̄)2

This estimator is unbiased when the error variance is in fact constant, but we now require the
expectation of V̂ (B) when the error variances differ. First, because Ei has an expectation of 0,
E
(
E2
i

)
= V (Ei). Next, the covariance matrix of the OLS residuals is

V (e) = (In −H)Σ(In −H)
= QΣQ

where Σ = diag
{
σ2
i

}
and Q ≡ In −H, like H, is symmetric and idempotent. Focus now on the

ith diagonal entry of V (e), that is, V (Ei), and let q′i represent the ith row of Q, and hence qi is
its ith column:

V (Ei) = q′idiag
{
σ2

1 , . . . , σ
2
i , . . . , σ

2
n

}
qi

=
n∑
j=1

q2
ijσ

2
j

Then
n∑
i=1

V (Ei) =
n∑
i=1

n∑
j=1

q2
ijσ

2
j

=
n∑
j=1

qjjσ
2
j

because, by the symmetry and idempotency of Q, qjj =
∑n
i=1 q

2
ij . The expectation of the estimated

variance of the OLS slope B is therefore

E[V̂ (B)] =
∑
V (Ei)

(n− 2)
∑

(xi − x̄)2

=
∑
qiiσ

2
i

(n− 2)
∑

(xi − x̄)2

=
∑

(1− hi)σ2
i

(n− 2)
∑

(xi − x̄)2

Recall, finally (from Section 11.2, page 2.70), that the hat-values in least-squares simple regression
are

hi = 1
n

+ (xi − x̄)2∑n
j=1(xj − x̄)2

Exercise 12.7

I’ll begin by duplicating the initial regression in the text, shown in Equation 12.2 (page 300) and the
component-plus-residual plots in Figure 12.6 (page 310):
library ("car") # for crPlots ()

url <- paste("https:// socialsciences . mcmaster .ca", "jfox", "Books",

Copyright © 2021 by John Fox. 46 All rights reserved.



"Applied -Regression -3E", " datasets ", "SLID - Ontario .txt",
sep="/")

SLID <- read.table (url , header =TRUE)

m1 <- lm(log2( compositeHourlyWages ) ~ sex + age + yearsEducation ,
data=SLID)

crPlots (m1 , ~ age + yearsEducation , col="gray")

20 30 40 50 60

−
3

−
2

−
1

0
1

2

age

C
om

po
ne

nt
+

R
es

id
ua

l(l
og

2(
co

m
po

si
te

H
ou

rly
W

ag
es

))

0 5 10 15 20

−
3

−
2

−
1

0
1

2

yearsEducation

C
om

po
ne

nt
+

R
es

id
ua

l(l
og

2(
co

m
po

si
te

H
ou

rly
W

ag
es

))Component + Residual Plots

Squaring education does a reasonable job of straightening the partial relationship of log-wages to
education, but the C+R plot for log(age− 15) reveals some lack of fit:
> m2 <- lm(log2( compositeHourlyWages ) ~ sex + log2(age - 15)
+ + I( yearsEducation ^2),
+ data=SLID)
> summary (m2)

Call:
lm( formula = log2( compositeHourlyWages ) ~ sex + log2(age - 15) +

I( yearsEducation ^2), data = SLID)

Residuals :
Min 1Q Median 3Q Max

-3.2855 -0.3611 0.0359 0.3746 2.5494

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 1.847825 0.041403 44.63 <2e -16 ***
sexMale 0.318115 0.018243 17.44 <2e -16 ***
log2(age - 15) 0.310876 0.008267 37.61 <2e -16 ***
I( yearsEducation ^2) 0.002646 0.000113 23.41 <2e -16 ***
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5766 on 3993 degrees of freedom
Multiple R- squared : 0.3694 , Adjusted R- squared : 0.3689
F- statistic : 779.5 on 3 and 3993 DF , p-value: < 2.2e -16

Copyright © 2021 by John Fox. 47 All rights reserved.



>
> crPlots (m2 , ~ log2(age - 15)
+ + I( yearsEducation ^2), col="gray")

0 1 2 3 4 5

−
3

−
2

−
1

0
1

2

log2(age − 15)

C
om

po
ne

nt
+

R
es

id
ua

l(l
og

2(
co

m
po

si
te

H
ou

rly
W

ag
es

))

0 100 200 300 400

−
2

−
1

0
1

2
I(yearsEducation^2)

C
om

po
ne

nt
+

R
es

id
ua

l(l
og

2(
co

m
po

si
te

H
ou

rly
W

ag
es

))Component + Residual Plots

Compare the C+R plot for age for this model with the corresponding C+R plot for quadratic model
(lower-left of Figure 12.7 on page 312). The quadratic model, Equation 12.7 (page 310), however, has
an extra parameter. One way to compare the two models is via the AIC or BIC (discussed in Section
22.1.1):
> # quadratic in age , see Equation 12.7
> m3 <- lm(log2( compositeHourlyWages ) ~ sex + poly(age , 2, raw=TRUE)
+ + I( yearsEducation ^2),
+ data=SLID)

> summary (m3)

Call:
lm( formula = log2( compositeHourlyWages ) ~ sex + poly(age , 2,

raw = TRUE) + I( yearsEducation ^2), data = SLID)

Residuals :
Min 1Q Median 3Q Max

-3.04688 -0.34263 0.02977 0.36354 2.56370

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 5.725e -01 8.338e -02 6.866 7.62e -12 ***
sexMale 3.195e -01 1.796e -02 17.794 < 2e -16 ***
poly(age , 2, raw = TRUE )1 1.198e -01 4.598e -03 26.046 < 2e -16 ***
poly(age , 2, raw = TRUE )2 -1.230e -03 5.918e -05 -20.778 < 2e -16 ***
I( yearsEducation ^2) 2.605e -03 1.135e -04 22.957 < 2e -16 ***
---
Signif . codes : 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5675 on 3992 degrees of freedom
Multiple R- squared : 0.3892 , Adjusted R- squared : 0.3886

Copyright © 2021 by John Fox. 48 All rights reserved.



F- statistic : 635.8 on 4 and 3992 DF , p-value: < 2.2e -16

> AIC(m2)
[1] 6946.869

> AIC(m3)
[1] 6821.221

> BIC(m2)
[1] 6978.335

> BIC(m3)
[1] 6858.981

The quadratic model has a much lower AIC and BIC, indicating a better fit to the data, even after
accounting for the extra parameter.

Exercise 12.9*

(a) The question suggests that you work from the distribution of the error vector ε = y−Xβ, but it’s
probably slightly more straightforward to work equivalently from the distribution of the response
vector y. The first part of the right-hand side of the equation given for p(y) (and notice that y is
a vector and so should be in boldface) is simply p

(
y(λ)) =

∏n
i=1 p

(
y

(λ)
i

)
because the observations

are independent, and because Y (λ)
i ∼ N(x′iβ, σ2

ε). That is, applying the formula for the normal
distribution (see on-line Appendix D, Section D.3.1),

p
(
y

(λ)
i

)
= 1
σε
√

2π
exp

−
(
y

(λ)
i − x′iβ

)2

2σ2
ε


To get p(yi) from p

(
y

(λ)
i

)
, we need the Jacobian of the transformation,

dY
(λ)
i

dYi
=
d

(
Y λi − 1
λ

)
dYi

= Y λ−1
i

Then p(yi) = p
(
y

(λ)
i

)
Y λ−1
i and p(y) =

∏n
i=1 p(yi), which produces the desired result.

(b) We know that Y (λ)
i ∼ N(x′iβ, σ2

ε), so given the value of the transformation parameter λ, we can
just perform an OLS regression of Y (λ) on the Xs to compute the MLE of β.

To get the maximized log-likelihood conditional on λ, first use p(y) given in part (a) of the exercise
to get the general likelihood:

L(β, σ2
ε , λ) = (2πσ2

ε)−n/2 exp

−
∑(

y
(λ)
i − x′iβ

)2

2σ2
ε

∏ yλ−1
i

Then, taking the log of L,

loge L(β, σ2
ε , λ) = −n2 loge(2πσ2

ε)−

∑(
y

(λ)
i − x′iβ

)2

2σ2
ε

+ (λ− 1)
∑

loge yi

Now conditionally fix the value of λ. Then at the conditional MLE, σ̂2
ε(λ) =

∑
E2
i (λ)/n where

the Ei(λ) = y
(λ)
i − x′iβ̂(λ) are the least-squares residuals from the regression of Y (λ) on the Xs,

and β̂(λ) is the estimated coefficient vector from this regression.

Copyright © 2021 by John Fox. 49 All rights reserved.



Finally, the maximized conditional log-likelihood is

loge L(β, σ2
ε |λ) = −n2 loge[2πσ̂2

ε(λ)]−
∑
E2
i (λ)

2σ̂2
ε(λ) + (λ− 1)

∑
loge Yi

= −n2 loge[2πσ̂2
ε(λ)]− nσ̂2

ε(λ)
2σ̂2

ε(λ) + (λ− 1)
∑

loge Yi

= −n2 (1 + loge 2π)− n

2 σ̂
2
ε(λ) + (λ− 1)

∑
loge Yi

as given in the text.

Exercise 12.11*

The instructions for the variance functions in this question are unclear. Here’s a clearer version: For
part (a), V (Y |x1, x2) = 0.1, and for the other parts of the question, V (Y |x1, x2) = 0.1× |x1 + x2 − 1|.
In generating the error for each observation, sample a value from ε ∼ N(0, 1) and multiply it by the
error standard deviation [i.e.,

√
V (Y |x1, x2)] for that observation.

I worked this problem in R as follows:

(a)
library ("car") # for loessLine ()
set.seed (123) # for reproducibility
n <- 100

x1 <- runif(n, 0, 1)
x2 <- runif(n, 0, 1)
eps <- rnorm(n)
y <- x1 + x2 + eps*sqrt (0.1)
m <- lm(y ~ x1 + x2)

par(mfrow=c(1, 3))
plot( fitted (m), y, ylab="Y", xlab= expression (hat(Y)))
loessLine ( fitted (m), y, col="black", var=TRUE ,)

xx1 <- xx2 <- seq (0, 1, by =0.1)
X <- expand .grid(x1=xx1 , x2=xx2)
X$x1.x2 <- with(X, x1 + x2)
X <- X[order (X$x1.x2), ]
X$Ey <- X$x1.x2
with(X, plot(x1 + x2 , Ey , type="l",

xlab= expression (x[1] + x[2]) , ylab= expression (E(Y))))
with(X, plot(x1 + x2 , rep (0.1 , nrow(X)), type="l",

xlab= expression (x[1] + x[2]) , ylab= expression (V(Y))))

This code generates the following three-part figure:

Copyright © 2021 by John Fox. 50 All rights reserved.



0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

Ŷ

Y

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

x1 + x2

E
(Y

)

0.0 0.5 1.0 1.5 2.0

0.
06

0.
08

0.
10

0.
12

0.
14

x1 + x2

V
(Y

)

I loaded the car package for the loessLine() function, which draws a nonparametric regression
line (showing how the conditional average of Y changes with Ŷ ) and also smooths the spread
around the line (showing how the conditional variation of Y changes with Ŷ ).

The scatterplot of Y versus Ŷ clearly captures the the linearity of the mean function and the
constant variance function.

(b)
y <- (x1 + x2 - 1)^2 + eps*sqrt (0.1*abs(x1 + x2 - 1))
m <- lm(y ~ x1 + x2)
par(mfrow =c(1, 3))
plot( fitted (m), y, ylab="Y", xlab= expression (hat(Y)))
loessLine ( fitted (m), y, col="black", var=TRUE ,)

X$Ey <- with(X, (x1 + x2 - 1)^2)
X$Vy <- with(X, 0.1*abs(x1 + x2 - 1))
with(X, plot(x1 + x2 , Ey , type="l",

xlab= expression (x[1] + x[2]) , ylab= expression (E(Y))))
with(X, plot(x1 + x2 , Vy , type="l",

xlab= expression (x[1] + x[2]) , ylab= expression (V(Y))))

0.05 0.10 0.15 0.20 0.25

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Ŷ

Y

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1 + x2

E
(Y

)

0.0 0.5 1.0 1.5 2.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

x1 + x2

V
(Y

)

For this example, I reused the previous values of x1 and x2, but generated new y values. The true
mean function is nonlinear, and the variance function is not constant. The scatterplot of Y versus
Ŷ does a reasonable job of revealing the nonlinearity in the mean function and the larger variance
at the ends compared to the middle of the range of x1 + x2.

(c)
x2 <- x1 + 0.1*rnorm(n)
y <- (x1 + x2 - 1)^2 + eps*sqrt (0.1*abs(x1 + x2 - 1))
m <- lm(y ~ x1 + x2)

Copyright © 2021 by John Fox. 51 All rights reserved.



pdf("fig -ex -12.11 -c.pdf", width =9, height =3)
par(mfrow=c(1, 3))
plot( fitted (m), y, ylab="Y", xlab= expression (hat(Y)))
loessLine ( fitted (m), y, col="black", var=TRUE ,)

X$Ey <- with(X, (x1 + x2 - 1)^2)
X$Vy <- with(X, 0.1*abs(x1 + x2 - 1))
with(X, plot(x1 + x2 , Ey , type="l",

xlab= expression (x[1] + x[2]) , ylab= expression (E(Y))))
with(X, plot(x1 + x2 , Vy , type="l",

xlab= expression (x[1] + x[2]) , ylab= expression (V(Y))))

0.30 0.32 0.34 0.36

0.
0

0.
5

1.
0

1.
5

2.
0

Ŷ

Y

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1 + x2

E
(Y

)

0.0 0.5 1.0 1.5 2.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

x1 + x2

V
(Y

)

As per the instructions, I generated new x2 values correlated with x1 and then generated new y
values. The second and third plots, for the true mean and variance functions, are the same as in
part (b). As in part (b), the scatterplot of Y versus Ŷ is informative about the mean and variance
functions.

(d)
x2 <- abs(x1 - 0.5)
y <- (x1 + x2 - 1)^2 + eps*sqrt (0.1*abs(x1 + x2 - 1))
m <- lm(y ~ x1 + x2)
pdf("fig -ex -12.11 -d.pdf", width =9, height =3)
par(mfrow=c(1, 3))
plot( fitted (m), y, ylab="Y", xlab= expression (hat(Y)))
loessLine ( fitted (m), y, col="black", var=TRUE ,)

X$Ey <- with(X, (x1 + x2 - 1)^2)
X$Vy <- with(X, 0.1*abs(x1 + x2 - 1))
with(X, plot(x1 + x2 , Ey , type="l",

xlab= expression (x[1] + x[2]) , ylab= expression (E(Y))))
with(X, plot(x1 + x2 , Vy , type="l",

xlab= expression (x[1] + x[2]) , ylab= expression (V(Y))))

Copyright © 2021 by John Fox. 52 All rights reserved.



0.05 0.10 0.15 0.20 0.25

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Ŷ

Y

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1 + x2

E
(Y

)

0.0 0.5 1.0 1.5 2.0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

x1 + x2

V
(Y

)

As in (c), I generated new x2 values, but now strongly (indeed, perfectly) nonlinearly related to
x1, along with new corresponding y values. The true mean and variance functions are the same as
in parts (b) and (c), as reflected in the second and third graphs. Now, however, the scatterplot of
Y versus Ŷ fails to capture the mean and variance functions.

Copyright © 2021 by John Fox. 53 All rights reserved.



Exercises for Chapter 13
Exercise 13.1*

The question suggests introducing two Lagrange multipliers to find the second principal component,
one for the normalizing constraint a′2a2 = 1 and one for the orthogonality constraint a′1a2 = 0, but the
second Lagrange multiplier is unnecessary.

I proceed as in Section 13.1.1 (pages 349–350): The variance of the second principal component is
S2
W2

= a′2RXXa2. Define
F2 ≡ a′2RXXa2 − L2(a′2a2 − 1)

Finding the value of a2 along with the Langrange multiplier L2 that maximize this function is the same
problem as finding a1 and L1, and the solution is therefore an eigenvector of RXX and the associated
eigenvalue. We want L2 = S2

W2
to be as big as possible, but we also require that a2 be orthogonal to

a1, and so L2 must be the second largest eigenvalue of RXX .

A similar argument implies that the variances of the k principal components are the eigenvalues
L1, L2, . . . , Lk of RXX in descending order and that the principal-component coefficients in the k
successive columns of A are the corresponding normalized eigenvectors.

That requiring that the ajs are mutually orthogonal is equivalent to requiring that the principal
components, the wjs, are also mutually orthogonal, is proven in the text, where I show that the matrix
of principal components W = [a1,a2, . . . ,ak] is an orthogonal matrix.

Exercise 13.3*

To make the linear algebra concrete, the geometry is shown in this graph, with the explanation to follow
(where the graph is drawn for a positive correlation, specifically r12 = .5):

z1

z2

λ1

λ2
1

1

w1

w2

Because the covariance matrix for standardized variables is their correlation matrix, here RXX , the
equation for the standard data ellipse takes the form z′R−1

XXz = 1, where in the general case z is a

Copyright © 2021 by John Fox. 54 All rights reserved.



(k × 1) vector. Here, k = 2, and so the equation for the ellipse is

[z1, z2]
[

1 r12
r12 1

]−1 [
z1
z2

]
= 1

1
1− r2

12
[z1, z2]

[
1 −r12
−r12 1

] [
z1
z2

]
= 1

1
1− r2

12

(
z2

1 − 2r12z1z2 + z2
2
)

= 1

Because the variables are standardized, their means are 0 and their standard deviations are 1, so
the ellipse is centered at the origin, and its vertical and horizontal shadows have half-length 1. The
half-shadows are shown as vectors along the z1 and z2 axes in the diagram, not to be confused with the
vector representation of regression discussed in Chapter 10.

Because of the symmetry induced by standardization, the axes of the ellipse are at 45◦ and −45◦
angles. The major axis corresponds to the first principal component; the major half-axis is shown
as a vector labeled w1. The length of this half-axis is the square-root of the larger eigenvalue L1 of
RXX (whose eigenvalues are the inverses of the eigenvalues of R−1

XX), and its coordinates are given by
the corresponding eigenvector scaled to be equal in length to

√
L1 (rather than to length 1), that is

a∗1 = [
√
L1/2,

√
L1/2]′.

The story is similar for the minor axis of the ellipse, replacing the first eigenvalue of RXX with the second
(smaller) eigenvalue L2, for which the coordinates of the half-axis vector are a∗2 = [−

√
L2/2,

√
L2/2]′.

The ordered eigenvalues of RXX are L1 = 1 + r12 and L2 = 1− r12 (for positive r12, as in the diagram).

For k = 3, the standard data ellipse for standardized Xs becomes an ellipsoid whose half-shadows on the
z1, z2, and z3 axes are all of length 1, and whose axes, representing the principal components, correspond
to the eigenvectors of RXX , each scaled by the square-root of the corresponding eigenvalue. These
properties generalize to higher dimensions, where the standard data ellipsoid becomes a hyper-ellipsoid.

Exercise 13.5*

It’s convenient (and sufficient) to work with the standardized regression coefficients, b∗ = R−1
XXrXy,

where RXX is the correlation matrix for the regressors (with the exception of the constant regressor)
and rXy is the vector of correlations between the regressors and the response.

The covariance matrix of the standardized regression coefficients is σ2
ε∗

n−1R−1
XX . Because σ2

ε∗
n−1 is a scalar

constant multiplying all of the elements of R−1
XX , it affects all of the determinants proportionally and

can be ignored.

For compactness, I’ll write R ≡ RXX and S ≡ R−1
XX . To convert S to a correlation matrix we can pre-

and post-multiply it by a diagonal matrix of its inverse square-root diagonal elements. That is, let
s contain the square-root diagonal elements of S (the standard errors of the standardized regression
coefficients but ignoring the factor σ2

ε∗
n−1 ). Then S∗ ≡ diag{s}−1 S diag{s}−1. Scaling the coefficient

covariance matrix in this manner affects the numerator and denominator of the GVIF proportionally,
and so it’s sufficient to work with the unscaled covariance matrix S directly.

The result we want to establish follows from standard formulas for the inverse and determinant of a
partitioned matrix. In particular, let’s partition R as

R =
[
R11 R12
R21 R22

]
where R11 is (p× p); R22 is q× q; R12 is p× q; R21 = R′12 is q× p; and p+ q = k. Then the inverse of

Copyright © 2021 by John Fox. 55 All rights reserved.



R is

S =
[
S11 S12
S21 S22

]
=
[
(R11 −R12R−1

22 R21)−1 S12
S21 (R22 −R21R−1

11 R12)−1

]
where I’ve not bothered to expand S12 and S21 = S′12 because we won’t need them.

Likewise, we can express the determinant of R as

det R = det R22 det(R11 −R12R−1
22 R21)

= det R11 det(R22 −R21R−1
11 R12)

from which

det R11 = det R
det(R22 −R21R−1

11 R12)

det R22 = det R
det(R11 −R12R−1

22 R21)

Now, starting with the formula for the GVIF in Equation 13.7, using the results given above and the
fact that the determinant of the inverse of a matrix is the inverse of its determinant,

GVIF1 = det R
det R11 det R22

= det R
(det R)2

det(R11−R12R−1
22 R21) det(R22−R21R−1

11 R12)

= det(R11 −R12R−1
22 R21) det(R22 −R21R−1

11 R12)
det R

= (det S11)−1(det S22)−1

det(S−1)

= det S
det S11 det S22

as stated in footnote 25 the text.

Exercise 13.7

I did the computations in R, using the stepAIC() function in the MASS package. The function is
slightly misleadingly named, in that it can perform selection by criteria other than the AIC. In particular,
specifying the argument k = log(n), where n is the sample size, uses the BIC as the criterion (still
labeled “AIC” in the output, however). I made this specification because the BIC was the selection
criterion in the all-subsets regressions performed in the text.
> library (" carData ") # for B. Fox data
> Bfox["1973", "tfr"] <- 1931 # correct error in data
> Bfox$time <- 1:30

> m <- lm( partic ~ ., data=Bfox)
> summary (m)

Call:
lm( formula = partic ~ ., data = Bfox)

Residuals :

Copyright © 2021 by John Fox. 56 All rights reserved.



Min 1Q Median 3Q Max
-0.83213 -0.33438 -0.01621 0.36769 1.05048

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 1.680e+01 3.724e+00 4.512 0.000157 ***
tfr -1.949e -06 5.011e -04 -0.004 0.996930
menwage -2.919e -02 1.502e -01 -0.194 0.847660
womwage 1.984e -02 1.744e -01 0.114 0.910413
debt 6.397e -02 1.850e -02 3.459 0.002132 **
parttime 6.566e -01 8.205e -02 8.002 4.27e -08 ***
time 4.452e -03 1.107e -01 0.040 0.968272
---
Signif . codes : 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5381 on 23 degrees of freedom
Multiple R- squared : 0.9935 , Adjusted R- squared : 0.9918
F- statistic : 587.3 on 6 and 23 DF , p-value: < 2.2e -16

> library ("MASS") # for stepAIC ()

> # backward
> stepAIC (lm( partic ~ ., data=Bfox),
+ direction =" backward ",
+ scope=list(lower = ~ 1,
+ upper = ~ tfr + menwage + womwage +
+ debt + parttime + time),
+ k=log (30))
Start: AIC = -21.35
partic ~ tfr + menwage + womwage + debt + parttime + time

Df Sum of Sq RSS AIC
- tfr 1 0.0000 6.6586 -24.752
- time 1 0.0005 6.6590 -24.750
- womwage 1 0.0037 6.6623 -24.735
- menwage 1 0.0109 6.6695 -24.702
<none > 6.6586 -21.350
- debt 1 3.4631 10.1217 -12.188
- parttime 1 18.5389 25.1974 15.174

Step: AIC = -24.75
partic ~ menwage + womwage + debt + parttime + time

Df Sum of Sq RSS AIC
- time 1 0.0006 6.659 -28.150
- womwage 1 0.0041 6.663 -28.134
- menwage 1 0.0114 6.670 -28.102
<none > 6.659 -24.752
- debt 1 5.2403 11.899 -10.736
- parttime 1 27.0229 33.681 20.479

Step: AIC = -28.15
partic ~ menwage + womwage + debt + parttime

Df Sum of Sq RSS AIC
- womwage 1 0.0037 6.663 -31.535
- menwage 1 0.0188 6.678 -31.467
<none > 6.659 -28.150
- debt 1 6.9403 13.599 -10.130

Copyright © 2021 by John Fox. 57 All rights reserved.



- parttime 1 27.2124 33.872 17.246

Step: AIC = -31.53
partic ~ menwage + debt + parttime

Df Sum of Sq RSS AIC
- menwage 1 0.0152 6.678 -34.868
<none > 6.663 -31.535
- debt 1 9.3340 15.997 -8.661
- parttime 1 27.3305 33.993 13.953

Step: AIC = -34.87
partic ~ debt + parttime

Df Sum of Sq RSS AIC
<none > 6.678 -34.868
- parttime 1 30.166 36.844 12.967
- debt 1 92.640 99.318 42.716

Call:
lm( formula = partic ~ debt + parttime , data = Bfox)

Coefficients :
( Intercept ) debt parttime

16.32501 0.06257 0.66133

> # forward :
> stepAIC (lm( partic ~ 1, data=Bfox),
+ direction =" forward ",
+ scope=list(lower = ~ 1,
+ upper = ~ tfr + menwage + womwage +
+ debt + parttime + time),
+ k=log (30)) # k = log(n) -> BIC
Start: AIC =109.39
partic ~ 1

Df Sum of Sq RSS AIC
+ debt 1 989.97 36.84 12.967
+ womwage 1 960.92 65.89 30.404
+ menwage 1 945.33 81.48 36.777
+ time 1 932.84 93.97 41.055
+ parttime 1 927.49 99.32 42.716
+ tfr 1 833.80 193.01 62.649
<none > 1026.81 109.392

Step: AIC =12.97
partic ~ debt

Df Sum of Sq RSS AIC
+ parttime 1 30.1656 6.678 -34.868
+ tfr 1 9.4190 27.425 7.511
<none > 36.844 12.967
+ menwage 1 2.8503 33.993 13.953
+ time 1 2.4229 34.421 14.328
+ womwage 1 0.0879 36.756 16.297

Step: AIC = -34.87
partic ~ debt + parttime

Copyright © 2021 by John Fox. 58 All rights reserved.



Df Sum of Sq RSS AIC
<none > 6.6780 -34.868
+ menwage 1 0.0151670 6.6629 -31.535
+ time 1 0.0081014 6.6699 -31.503
+ tfr 1 0.0066785 6.6714 -31.496
+ womwage 1 0.0001297 6.6779 -31.467

Call:
lm( formula = partic ~ debt + parttime , data = Bfox)

Coefficients :
( Intercept ) debt parttime

16.32501 0.06257 0.66133

> # forward / backward :
> stepAIC (lm( partic ~ 1, data=Bfox),
+ direction ="both",
+ scope=list(lower = ~ 1,
+ upper = ~ tfr + menwage + womwage +
+ debt + parttime + time),
+ k=log (30))
Start: AIC =109.39
partic ~ 1

Df Sum of Sq RSS AIC
+ debt 1 989.97 36.84 12.967
+ womwage 1 960.92 65.89 30.404
+ menwage 1 945.33 81.48 36.777
+ time 1 932.84 93.97 41.055
+ parttime 1 927.49 99.32 42.716
+ tfr 1 833.80 193.01 62.649
<none > 1026.81 109.392

Step: AIC =12.97
partic ~ debt

Df Sum of Sq RSS AIC
+ parttime 1 30.17 6.68 -34.868
+ tfr 1 9.42 27.42 7.511
<none > 36.84 12.967
+ menwage 1 2.85 33.99 13.953
+ time 1 2.42 34.42 14.328
+ womwage 1 0.09 36.76 16.297
- debt 1 989.97 1026.81 109.392

Step: AIC = -34.87
partic ~ debt + parttime

Df Sum of Sq RSS AIC
<none > 6.678 -34.868
+ menwage 1 0.015 6.663 -31.535
+ time 1 0.008 6.670 -31.503
+ tfr 1 0.007 6.671 -31.496
+ womwage 1 0.000 6.678 -31.467
- parttime 1 30.166 36.844 12.967
- debt 1 92.640 99.318 42.716

Call:
lm( formula = partic ~ debt + parttime , data = Bfox)

Copyright © 2021 by John Fox. 59 All rights reserved.



Coefficients :
( Intercept ) debt parttime

16.32501 0.06257 0.66133

In this example, all three procedures select the same model, with debt and part-time work as explanatory
variables. This is also the model with the smallest BIC among all subsets of explanatory variables,
as revealed by Figure 13.8. If you look carefully, you’ll see that the BIC for this model reported by
stepAIC() is −34.9, while the BIC shown in Figure 13.8 is approximately −140. The BICs computed
by stepAIC() and by the program used to produce Figure 13.8 differ by an additive constant; this
difference is inessential because we only attend to differences in the values of the BIC for models to be
compared.

Exercise 13.9*

Taking the hint, b∗d = (RXX +dIk)−1 1
n−1Z′Xzy, and let W ≡ (RXX +dIk)−1. Then b∗d = W 1

n−1Z′Xzy,
and

V (b∗d) = 1
(1− n)2 WZ′V (zy)ZW′

= 1
(n− 1)2 WZ′σ∗2ε InZW

= σ∗2ε
(n− 1)2 WZ′InZW

= σ∗2ε
n− 1W 1

n− 1Z′ZW

= σ∗2ε
n− 1WRXXW

= σ∗2ε
n− 1(RXX + dIk)−1RXX(RXX + dIk)−1

Copyright © 2021 by John Fox. 60 All rights reserved.



Exercises for Chapter 14
Exercise 14.1

π V (ε) = π(1− π)
.001 .001
.01 .0099
.05 .0475
.1 .09
.3 .21
.5 .25
.7 .21
.9 .09
.95 .0475
.99 .0099
.999 .001

Heteroscedasticity becomes serious only when π gets close to 0 or 1; the error variance is nearly constant
between π = .3 and π = .7.

Exercise 14.3*

Differentiating π = 1/[1 + e−(α+βX)] with respect to X,

dπ

dx
= βe−(α+βX)

[1 + e−(α+βX)]2

= β × e−(α+βX)

1 + e−(α+βX) ×
1

1 + e−(α+βX)

= β ×
[
1− 1

1 + e−(α+βX)

]
× 1

1 + e−(α+βX)

= β(1− π)π

Exercise 14.5*

Dropping the subscript i for compactness,

1− π = 1− 1
1 + exp[−(α+ β1X1 + · · ·+ βkXk)]

= 1 + exp[−(α+ β1X1 + · · ·+ βkXk)]− 1
1 + exp[−(α+ β1X1 + · · ·+ βkXk)]

= exp(α+ β1X1 + · · ·+ βkXk)× exp[−(α+ β1X1 + · · ·+ βkXk)]
exp(α+ β1X1 + · · ·+ βkXk)× {1 + exp[−(α+ β1X1 + · · ·+ βkXk)]}

= 1
exp(α+ β1X1 + · · ·+ βkXk) + 1

Exercise 14.7*

We have

−2σ2
ε(l − l′) = −2σ2

ε

{[
−n2 loge(2πσ2

ε)−
∑
ε2
i

2σ2
ε

]
−
[
−n2 loge(2πσ2

ε)
]}

= −2σ2
ε

(
−
∑
ε2
i

2σ2
ε

)
=
∑

ε2
i

The result follows from substituting the least-squares residuals Ei for the errors εi.

Copyright © 2021 by John Fox. 61 All rights reserved.



Exercise 14.9*

Substituting y∗ into the formula for b, multiplying out, and simplifying produces the desired result:

b = (X′VX)−1X′V[Xb + V−1(y− p)]

= (X′VX)−1X′VXb + (X′VX)−1X′VV−1(y− p)
= b + (X′VX)−1X′(y− p)

Exercise 14.11*

Using the chain rule to differentiate the log-likelihood (in the equation at the bottom of page 397),

∂ loge L
∂γj

= Wijxi −
n∑
i=1

[
1 +

m−1∑
l=1

exp(x′iγl)
]−1

exp(x′iγj)xi

= Wijxi −
n∑
i=1

exp(x′iγj)xi
1 +

∑m−1
l=1 exp(x′iγl)

The estimating equations follow from setting the derivatives to 0 and substituting the estimated
coefficients cj for the parameters γj .

To get the components of the information matrix, differentiate the log-likelihood a second time, first
with respect to γj and then with respect to γj′ (i.e., the parameter vector for a category of the response
different from j):

∂ loge L
∂γj∂γ

′
j

=
n∑
i=1

{
xix′i exp(2x′iγj)

[1 +
∑m−1
l=1 exp(x′iγl)]2

−
xix′i exp(x′iγj)

1 +
∑m−1
l=1 exp(x′iγl)

}

= −
n∑
i=1

xix′i exp(x′iγj)[1 +
∑m−1
l=1 exp(x′iγl)− exp(x′iγj)]

[1 +
∑m−1
l=1 exp(x′iγl)]2

∂ loge L
∂γj∂γ

′
j′

=
n∑
i=1

xix′i exp(x′iγj) exp(x′iγj′)
[1 +

∑m−1
l=1 exp(x′iγl)]2

=
n∑
i=1

xix′i exp[x′i(γj + γj′)]
[1 +

∑m−1
l=1 exp(x′iγl)]2

These derivatives involve xs and γs, none of which are random, and so the components of the information
matrix are just the negatives of the second derivatives, as given in the text.

Exercise 14.13*

Taking the log of the likelihood given on page 412 produces (capitalizing Yi for consistency with the
notation used for the likelihood of the binary logit model)

loge L(β) =
m∑
i=1

{
loge

(
ni
Yi

)
+ Yix′iβ + ni loge

[
1

1 + exp(x′iβ)

]}
Then differentiating the log-likelihood with respect to the regression coefficients,

∂ loge L(β)
∂β

=
m∑
i=1

Yixi −
m∑
i=1

ni exp(x′iβ)
1 + exp(x′iβ)xi

=
m∑
i=1

Yixi −
m∑
i=1

ni
1

1 + exp(−x′iβ)xi

Copyright © 2021 by John Fox. 62 All rights reserved.



Setting the derivatives to 0 and substituting the MLE b for the parameters β produces the estimating
equations

m∑
i=1

ni
1

1 + exp(−x′ib)xi =
m∑
i=1

Yixi

where we recognize that Pi ≡ 1/[1 + exp(−x′iβ)] is the fitted probability.

Comparing these estimating equations for the binomial logit model with those for the binary logit model
in Equation 14.16 (on page 389), we see the right-hand sides of the equations are the same, except
that Yi for the binary model for a single individual is either 0 or 1, while the response for the binomial
model counts the number of “successes” (equivalent to the number of binary 1s) in ni binomial trials.
Similarly, the sum on the left-hand side of the estimating equations is the same for the binomial model
as for the binary model, except that in the binary case, we multiply by the number of binomial trials
ni. Thus if we applied the binary logit model to binomial data resolved into n =

∑m
i=1 ni individual

observations, we’d get exactly the same MLE of β.

Copyright © 2021 by John Fox. 63 All rights reserved.



Exercises for Chapter 15
Exercise 15.1

In the corrected description of the negative-binomial model (see the errata for the text), the inverse of
the scale parameter is the shape parameter ψ = 1/ω. It’s actually when the scale parameter ω = 0 that
the negative binomial model reduces to the Poisson model, because the negative-binomial variance of
the response is then V (Yi) = µi + ωµ2

i = µi + 0× µ2
i = µi—that is, the Poisson variance.

I’ll begin by using R to reproduce the Poisson and negative-binomial regressions reported in the text;
recall from later in the chapter that the specification of the linear predictor in these models is flawed in
that assets should really be replaced by the log of assets:
> library ("car") # for Ornstein Data
Loading required package : carData
> library ("MASS") # for glm.nb()

> # data management to correspond to text
> Ornstein $ sector <- factor ( Ornstein $sector ,
+ levels =c('WOD ', 'TRN ', 'FIN ', 'MIN ', 'HLD ',
+ 'MER ', 'MAN ', 'AGR ', 'BNK ', 'CON '))
> contrasts ( Ornstein $ sector ) <- contr. treatment ( levels ( Ornstein $ sector ),
+ base =10)
> contrasts ( Ornstein $ nation ) <- contr. treatment ( levels ( Ornstein $ nation ),
+ base =4)
> Ornstein $ assets <- Ornstein $ assets /1000

> # Poisson and negative - binomial models as fit in the text:

> mod. ornstein .p <- glm( interlocks ~ assets + nation + sector ,
+ family =poisson , data= Ornstein )
> summary (mod. ornstein .p)

Call:
glm( formula = interlocks ~ assets + nation + sector , family = poisson ,

data = Ornstein )

Deviance Residuals :
Min 1Q Median 3Q Max

-5.9908 -2.4767 -0.8582 1.3472 7.3610

Coefficients :
Estimate Std. Error z value Pr(>|z|)

( Intercept ) 0.879075 0.210058 4.185 2.85e -05 ***
assets 0.020851 0.001202 17.340 < 2e -16 ***
nationCAN 0.825933 0.048968 16.867 < 2e -16 ***
nationOTH 0.662727 0.075534 8.774 < 2e -16 ***
nationUK 0.248847 0.091932 2.707 0.006792 **
sectorWOD 1.331123 0.213065 6.247 4.17e -10 ***
sectorTRN 1.297399 0.213786 6.069 1.29e -09 ***
sectorFIN 1.296546 0.211464 6.131 8.72e -10 ***
sectorMIN 1.240637 0.208526 5.950 2.69e -09 ***
sectorHLD 0.828031 0.232934 3.555 0.000378 ***
sectorMER 0.797261 0.218188 3.654 0.000258 ***
sectorMAN 0.672169 0.213298 3.151 0.001625 **
sectorAGR 0.619571 0.211968 2.923 0.003467 **
sectorBNK 0.210389 0.253688 0.829 0.406922
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Copyright © 2021 by John Fox. 64 All rights reserved.



( Dispersion parameter for poisson family taken to be 1)

Null deviance : 3737.0 on 247 degrees of freedom
Residual deviance : 1887.4 on 234 degrees of freedom
AIC: 2813.4

Number of Fisher Scoring iterations : 5

> mod. ornstein .nb <- glm.nb( interlocks ~ assets + nation + sector ,
+ data= Ornstein )
> summary (mod. ornstein .nb)

Call:
glm.nb( formula = interlocks ~ assets + nation + sector , data = Ornstein ,

init.theta = 1.312185376 , link = log)

Deviance Residuals :
Min 1Q Median 3Q Max

-2.6805 -1.0840 -0.2759 0.4387 2.0262

Coefficients :
Estimate Std. Error z value Pr(>|z|)

( Intercept ) 0.734694 0.470339 1.562 0.11828
assets 0.032663 0.005734 5.697 1.22e -08 ***
nationCAN 0.786248 0.143056 5.496 3.88e -08 ***
nationOTH 0.798014 0.246622 3.236 0.00121 **
nationUK 0.307807 0.253997 1.212 0.22557
sectorWOD 1.387476 0.500557 2.772 0.00557 **
sectorTRN 1.329927 0.509125 2.612 0.00900 **
sectorFIN 1.343301 0.500797 2.682 0.00731 **
sectorMIN 1.254662 0.470301 2.668 0.00764 **
sectorHLD 0.873148 0.579060 1.508 0.13159
sectorMER 0.939730 0.505574 1.859 0.06306 .
sectorMAN 0.812702 0.479040 1.697 0.08979 .
sectorAGR 0.733907 0.476568 1.540 0.12356
sectorBNK -0.328478 0.719424 -0.457 0.64797
---
Signif . codes : 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

( Dispersion parameter for Negative Binomial (1.3122) family taken to be 1)

Null deviance : 440.26 on 247 degrees of freedom
Residual deviance : 293.49 on 234 degrees of freedom
AIC: 1717.1

Number of Fisher Scoring iterations : 1

Theta: 1.312
Std. Err .: 0.143

2 x log - likelihood : -1687.104

Next, I’ll compare the log-likelihoods for the models to compute the likelihood-ratio test statistic and
its p-value:
> (G2 <- as. vector (2*( logLik (mod. ornstein .nb) - logLik (mod. ornstein .p))))
[1] 1098.317
> 0.5* pchisq (G2 , df=1, lower .tail=FALSE)

Copyright © 2021 by John Fox. 65 All rights reserved.



[1] 3.834035e -241

The p-value for the test is effectively 0, suggesting overwhelming evidence for overdispersion.

Exercise 15.3

It’s simple to perform the necessary computations in R:
> observed <- matrix (c(305 , 126,
+ 405, 125,
+ 265, 49), 3, 2, byrow=TRUE)
> observed

[,1] [,2]
[1,] 305 126
[2,] 405 125
[3,] 265 49
> expected <- outer( rowSums ( observed ), colSums ( observed ))/
+ sum( observed )
> expected

[,1] [,2]
[1,] 329.5882 101.41176
[2,] 405.2941 124.70588
[3,] 240.1176 73.88235
>
> # Pearson chi - square
> sum (( observed - expected )^2/ expected )
[1] 18.75532
>
> # LR chi - square
> 2*sum( observed *log( observed / expected ))
[1] 19.42795

As is typically the case, the Pearson and likelihood-ratio chi-square test statistics are similar, and the
value of the LR test statistic computed here agrees with the value reported in the text.

Exercise 15.5*

Making the indicated substitutions, and recalling that in the binomial context y is the observed
proportion of successes in n binomial trials and µ is the probability of a success on an individual trial,
we have

p(y) = exp
{
ny loge

µ

1− µ − n loge
[
1 + exp

(
loge

µ

1− µ

)]
+ loge

(
n

ny

)}
=
(
n

ny

)(
µ

1− µ

)ny [
1 + exp

(
loge

µ

1− µ

)]−n
=
(
n

ny

)(
µ

1− µ

)ny (
1 + µ

1− µ

)−n
=
(
n

ny

)(
µ

1− µ

)ny ( 1
1− µ

)−n
=
(
n

ny

)(
µ

1− µ

)ny
(1− µ)n

=
(
n

ny

)
µny (1− µ)n(1−y)

which is the usual form for the binomial probability of ny successes and n(1− y) failures.

Copyright © 2021 by John Fox. 66 All rights reserved.



Exercise 15.7*

• For the Gaussian family:

V (Y ) = φ× d2(θ2)/2
dθ2

= φ× d(θ)
dθ

= φ

• For the binomial family (using θ = loge[µ(1− µ)] and hence eθ = µ/(1− µ)):

V (Y ) = 1
n
× d2[loge(1 + eθ)]

dθ2

= 1
n
×
d
(

eθ

1+eθ

)
dθ

= 1
n
× eθ

(1 + eθ)2

= 1
n
×

µ
1−µ(

1 + µ
1−µ

)2

= 1
n
×

µ
1−µ(
1

1−µ

)2

= µ(1− µ)
n

• For the Poisson family (using θ = loge µ and hence eθ = µ):

V (Y ) = 1×
d2 (eθ)
dθ2 = eθ = µ

• For the gamma family (using θ = −1/µ, that is, in this case the negative of the canonical link):

V (Y ) = φ× d2[− loge(−θ)]
dθ2

= φ× d(−1/θ)
dθ

= φ× 1
θ2

= φµ2

• For the inverse-Gaussian family (using θ = −1/(2µ2), in this case −1/2 times the canonical link)

V (Y ) = φ× d2(−
√
−2θ)

dθ2

= φ×
d
(

1√
2θ

)
dθ

= φ× 1
2
√

2(−θ)3/2

= φ× 1

2
√

2
(

1
2µ2

)3/2

= φµ3

Copyright © 2021 by John Fox. 67 All rights reserved.



Exercise 15.9

To make the general formula for the deviance work properly for the gamma and inverse-Gaussian
families, it’s necessary to be more careful about the definition of the canonical link in each case. In
particular, for the gamma family, we must take the canonical link as gc(µ) = −1/µ rather than, as is
conventional in fitting GLMs, 1/µ; for the inverse-Gaussian family, we must take gc(µ) = −1/(2µ2)
rather than as 1/µ2. This difference is inessential for the fit of the model, because the alternative
canonical links are linear functions of the conventional links.

I’m grateful to Georges Monette of York University for clarifying this issue, and the point should have
been addressed either in the exercise or in the text.

• For the Gaussian family, ai = 1. Recalling that in the Gaussian case, the ML and least-squares
estimates coincide, µ̂i = Ŷi, and

∑
YiŶi =

∑
Ŷ 2
i ,

D(y; µ̂) = 2
∑[

Yi(Yi − Ŷi)−
Y 2
i

2 + Ŷ 2
i

2

]

= 2
∑(

Y 2
i − YiŶi −

Y 2
i

2 + Ŷ 2
i

2

)
=
∑(

2Y 2
i − 2Ŷ 2

i − Y 2
i + Ŷ 2

i

)
=
∑(

Y 2
i − Ŷ 2

i

)
=
∑(

Yi − Ŷi
)2

because
∑(

Y 2
i − Ŷ 2

i

)
=
∑
Y 2
i +

∑
Ŷ 2
i − 2

∑
YiŶi =

∑
Y 2
i +

∑
Ŷ 2
i − 2

∑
Ŷ 2
i .

• For the binomial family, ai = 1/ni.

D(y; µ̂) = 2
∑

ni

{
Yi

(
loge

Yi
1− Yi

− loge
µ̂i

1− µ̂i

)
− loge

[
1 + exp

(
loge

Yi
1− Yi

)]
+ loge

[
1 + exp

(
loge

µ̂i
1− µ̂i

)]}
= 2

∑
ni

{
Yi [loge Yi − loge(1− Yi)− loge µ̂i + loge(1− µ̂i)]

+ loge(1− Yi)− loge(1− µ̂i)
}

= 2
∑

ni
[
Yi loge Yi − Yi loge(1− Yi)− Yi loge µ̂i + Yi loge(1− µ̂i)

+ loge(1− Yi)− loge(1− µ̂i)
]

= 2
∑

ni [Yi loge Yi − Yi loge µ̂i + (1− Yi) loge(1− Yi)− (1− Yi) loge(1− µ̂i)]

= 2
∑[

ni loge
Yi
µ̂i

+ ni(1− Yi) loge
1− Yi
1− µ̂i

]

• For the Poisson family, ai = 1.

D(y; µ̂) = 2
∑

[Yi(loge Yi − loge µ̂i)]− elogYi + eloge µ̂i

= 2
∑[

Yi loge
Yi
µ̂i
− (Yi − µ̂i)

]

Copyright © 2021 by John Fox. 68 All rights reserved.



• For the gamma family, ai = 1.

D(y; µ̂) = 2
∑{

Yi

(
− 1
Yi

+ 1
µ̂i

)
+ loge

(
1
Yi

)
− loge

(
1
µ̂i

)}
= 2

∑[
−1 + Yi

µ̂i
− loge Yi + loge µ̂i

]
= 2

∑(
− loge

Yi
µ̂i

+ Yi − µ̂i
µ̂i

)

• For the inverse-Gaussian family, ai = 1.

D(y; µ̂) = 2
∑[

Yi

(
− 1

2Y 2
i

+ 1
2µ̂2

i

)
+

√
2 1

2Y 2
i

−

√
2 1

2µ̂2
i

]

= 2
∑(

− Yi
2Y 2

i

+ Yi
2µ̂2

i

+ 1
Yi
− 1
µ̂i

)
=
∑ −µ̂2

i + Y 2
i + 2µ̂2

i − 2Yiµ̂i
Yiµ̂2

i

=
∑ (Yi − µ̂i)2

Yiµ̂2
i

Exercise 15.11

I did the computations with the glm() function in R, which accommodates custom link functions
defined as a "link-glm" objects. For quasi-variances, the link is
> explink <- list(
+ linkfun = function (mu) exp(mu),
+ linkinv = function (eta) log(eta),
+ mu.eta = function (eta) 1/eta , # d mu / d eta
+ valideta = function (eta) eta > 0,
+ name = "exp"
+ )
> class( explink ) <- "link -glm"

Most of the elements of the link object are essentially self-explanatory: The link function is η = g(µ) =
exp(µ); the inverse link (i.e., the mean function) is µ = g−1(η) = loge η; and the value of the linear
predictor η is constrained to be positive. For those with calculus, the mu.eta element of the link object
is the derivative of the inverse link, dµ/dη = 1/η.

Then applying this exponential link, along with the constant variance function, produces the following
quasi-likelihood estimates of the quasi-variances:
> y <- log(c(2.771 , 3.867 , 2.514)^2)
> X <- matrix (c(1, 1, 0,
+ 1, 0, 1,
+ 0, 1, 1),
+ 3, 3, byrow=TRUE)
>
> (m <- glm(y ~ X - 1, family = quasi(link=explink ,
+ variance =" constant ")))

Call: glm( formula = y ~ X - 1,
family = quasi (link = explink , variance = " constant "))

Coefficients :
X1 X2 X3

Copyright © 2021 by John Fox. 69 All rights reserved.



8.1560 -0.4775 6.7977

Degrees of Freedom : 3 Total (i.e. Null ); 0 Residual
Null Deviance : Inf
Residual Deviance : 0 AIC: NA

Note the 0 residual deviance, indicating a perfect fit, as should be the case when there are only three
categories. In the call to glm(), I included -1 in the model formula to suppress the regression constant,
which otherwise would automatically have been included in the model.

Finally, let’s verify that we can recover the original variances of the differences:
> v <- coef(m)
> all.equal (v[1] + v[2], 2.771^2 , check. attributes =FALSE)
[1] TRUE
> all.equal (v[1] + v[3], 3.867^2 , check. attributes =FALSE)
[1] TRUE
> all.equal (v[2] + v[3], 2.514^2 , check. attributes =FALSE)
[1] TRUE

Notice that I used the all.equal() function to check for equality within rounding error rather than
for exact equality. As usual, when numerical computations on done on a digital computer, the results
usually aren’t exact, and so checking for exact quality (using the == operator) would be a bad idea.

Copyright © 2021 by John Fox. 70 All rights reserved.



Exercises for Chapter 16
Exercise 16.1*

(a) Under the model, y ∼ Nn(Xβ,Σεε), so

p(y|X,Σεε) = 1
(2π)n/2

√
det Σεε

exp
[
−1

2(y−Xβ)′Σ−1
εε (y−Xβ)

]

The log-likelihood, given in the exercise, follows directly.

(b) The only term in the log-likelihood involving β is the last, and so differentiating the log-likelihood
with respect to β yields

∂ loge L(β)
∂β

= −1
2 × 2×X′Σ−1

εε (y−Xβ)

= X′Σ−1
εε Xβ −X′Σ−1

εε y

Setting the derivatives to zero, substituting bGLS for β, and solving for bGLS produces the required
result,

bGLS = (X′Σ−1
εε X)−1X′Σ−1

εε y

The covariance matrix of the GLS estimator is then

V (bGLS) = (X′Σ−1
εε X)−1X′Σ−1

εε V (y)Σ−1
εε X(X′Σ−1

εε X)−1

= (X′Σ−1
εε X)−1X′Σ−1

εε ΣεεΣ−1
εε X(X′Σ−1

εε X)−1

= (X′Σ−1
εε X)−1X′Σ−1

εε X(X′Σ−1
εε X)−1

= (X′Σ−1
εε X)−1

(c) Remarkably, the proof for the GLS estimator is identical to that for the WLS given in Exercise
12.4, up to the last step, where we have (using our current notation)

V (̂bj) = m′jΣεεmj + a′jΣεεaj

The error-covariance matrix Σεε is positive-definite, and so the term a′jΣεεaj is non-negative and
can only be 0 if aj = 0. Thus, the matrix A, giving the difference between the BLUE (best linear
unbiased estimator) and the GLS estimator must be 0, showing that the GLS estimator is the
BLUE.

Exercise 16.3

(a) The proof that E(b) = β depends only on the assumption of linearity—that is, E(ε) = 0 or
equivalently E(y) = Xβ—and not on the assumptions that the errors are independent.

(b) The variance of the OLS estimator is

V (b) = (X′X)−1X′V (y)[(X′X)−1X′]′

= (X′X)−1X′ΣεεX(X′X)

because V (y) = V (ε) = Σεε.

(c) As usual, I used R to perform the necessary computations. I’ll illustrate for ρ = .5 and then present
the results for all three values of ρ. In the computations below, I set the variance of the shocks
σ2
ν = 1, which is inessential because it affects all of the coefficient variances proportionally.

First, I’ll form the model matrix X and the covariance matrix of the errors, Σεε:

Copyright © 2021 by John Fox. 71 All rights reserved.



> library ("MASS") # for fractions ()
> (X <- cbind (1, 1:10))

[,1] [,2]
[1,] 1 1
[2,] 1 2
[3,] 1 3
[4,] 1 4
[5,] 1 5
[6,] 1 6
[7,] 1 7
[8,] 1 8
[9,] 1 9

[10 ,] 1 10
> rho <- .5
> Sigma <- matrix (0, 10, 10)
> for (i in 1:10){
+ for (j in 1:10){
+ Sigma[i, j] <- rho^abs(i - j)/(1 - rho ^2)
+ }
+ }
> fractions (Sigma)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [ ,10]
[1,] 4/3 2/3 1/3 1/6 1/12 1/24 1/48 1/96 1/192 1/384
[2,] 2/3 4/3 2/3 1/3 1/6 1/12 1/24 1/48 1/96 1/192
[3,] 1/3 2/3 4/3 2/3 1/3 1/6 1/12 1/24 1/48 1/96
[4,] 1/6 1/3 2/3 4/3 2/3 1/3 1/6 1/12 1/24 1/48
[5,] 1/12 1/6 1/3 2/3 4/3 2/3 1/3 1/6 1/12 1/24
[6,] 1/24 1/12 1/6 1/3 2/3 4/3 2/3 1/3 1/6 1/12
[7,] 1/48 1/24 1/12 1/6 1/3 2/3 4/3 2/3 1/3 1/6
[8,] 1/96 1/48 1/24 1/12 1/6 1/3 2/3 4/3 2/3 1/3
[9,] 1/192 1/96 1/48 1/24 1/12 1/6 1/3 2/3 4/3 2/3

[10 ,] 1/384 1/192 1/96 1/48 1/24 1/12 1/6 1/3 2/3 4/3

It’s then a straightforward matter to compute the coefficient standard deviations (that is, the
square-roots of the coefficient variances) for the OLS and the GLS estimators:
> XtXi <- solve (t(X) %*% X)
> V_OLS <- XtXi %*% t(X) %*% Sigma %*% X %*% XtXi
> sqrt(diag(V_OLS ))
[1] 1.1283387 .1750022
> V_GLS <- solve (t(X) %*% solve (Sigma) %*% X)
> sqrt(diag(V_GLS ))
[1] 1.0915536 .1684304

The results for all three values of ρ are shown in the answer to part (d).

(d)* To compute the standard deviations of the estimator dropping the first transformed observation,
I’ll first find the transformation matrix Γ and verify that if I use all 10 observations, I get the
same GLS standard errors that I computed above:
> Gamma <- matrix (0, 10, 10)
> diag( Gamma) <- 1
> for (i in 2:10){
+ Gamma [i, i -1] <- -rho
+ }
> Gamma [1, 1] <- sqrt (1 - rho ^2)
> round(Gamma , 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [ ,10]
[1,] 0.866 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
[2,] -0.500 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

Copyright © 2021 by John Fox. 72 All rights reserved.



[3,] 0.000 -0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0
[4,] 0.000 0.0 -0.5 1.0 0.0 0.0 0.0 0.0 0.0 0
[5,] 0.000 0.0 0.0 -0.5 1.0 0.0 0.0 0.0 0.0 0
[6,] 0.000 0.0 0.0 0.0 -0.5 1.0 0.0 0.0 0.0 0
[7,] 0.000 0.0 0.0 0.0 0.0 -0.5 1.0 0.0 0.0 0
[8,] 0.000 0.0 0.0 0.0 0.0 0.0 -0.5 1.0 0.0 0
[9,] 0.000 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 1.0 0

[10 ,] 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.5 1
> Xs <- Gamma %*% X
> V_GLS_t <- solve (t(Xs) %*% Xs)
> sqrt(diag(V_GLS_t)) # check
[1] 1.0915536 .1684304

Then, dropping the first observation,
> V_GLS_t1 <- solve(t(Xs[-1, ]) %*% Xs[-1, ])
> sqrt(diag(V_GLS_t1))
[1] 1.9264244 .2581989

The results for the standard deviation of β for all three values of ρ are

ρ OLS GLS GLS−1
0 .1101 .1101 .1291
.5 .1750 .1684 .2582
.9 .3005 .2821 1.2910

where GLS−1 indicates deleting the first transformed observation. Notice that when ρ = 0, the
coefficient standard deviations for the OLS and GLS estimators are the same, as should be the
case. For this configuration of X-values, GLS is only slightly better than OLS, and the small
improvement for GLS depends crucially on retaining the first transformed observation, especially
when ρ is large.

If there are more observations, then the effect of removing the first observation gets smaller. For
example, I repeated the computations shown above but with n = 100 observations, repeating each
of X-values 10 times, producing the following results:

ρ OLS GLS GLS−1
0 .03482 .03482 .03526
.5 .04685 .03997 .04048
.9 .05865 .03654 .03665

(e) I repeated the computations in part (d) but for xt = (t− 5)2 rather than for xt = t, t = 1, 2, . . . 9,
producing the following results:

ρ OLS GLS GLS−1
0 .05698 .05698 .06901
.5 .07390 .07131 .08559
.9 .08370 .07918 .08077

Now the advantage of the GLS estimator is even smaller and dropping the first observation makes
little difference.

Exercise 16.5*

There’s an error in the hints for the exercise: Actually, not Σεε but Σ−1
εε = (1/σ2

ν)Γ′Γ, and so
det Σεε = (σ2

ν)n(1/ det Γ)2. Applying the (corrected) hints given in the exercise, and substituting into

Copyright © 2021 by John Fox. 73 All rights reserved.



Equation 16.1 in the text, we have

loge(β, ρ, σ2
ν) = −n2 loge 2π − 1

2 loge
[(
σ2
ν

)n 1
1− ρ2

]
− 1

2(y−Xβ)′ 1
σ2
ν

Γ′Γ(y−Xβ)

= −n2 loge 2π − n

2 loge σ2
ν + 1

2 loge(1− ρ2)− 1
2σ2

ν

(Γy− ΓXβ)′(Γy− ΓXβ)

= −n2 loge 2π − n

2 loge σ2
ν + 1

2 loge(1− ρ2)− 1
2σ2

ν

(y∗ −X∗β)′(y∗ −X∗β)

Exercise 16.7

(a) I used R to fit the OLS regression, and functions in the car package for various regression diagnostics:

> library ("car") # for data and diagnostics
Loading required package : carData
> rownames ( Hartnagel ) <- Hartnagel $year

> m.ols <- lm( fconvict ~ tfr + partic + degrees + mconvict ,
+ data= Hartnagel )
> summary (m.ols) # matching Equation 16.18

Call:
lm( formula = fconvict ~ tfr + partic + degrees + mconvict ,

data = Hartnagel )

Residuals :
Min 1Q Median 3Q Max

-42.964 -9.204 -3.566 6.149 48.385

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 127.639997 59.957044 2.129 0.0408 *
tfr -0.046567 0.008033 -5.797 1.75e -06 ***
partic 0.253416 0.115132 2.201 0.0348 *
degrees -0.212049 0.211454 -1.003 0.3232
mconvict 0.059105 0.045145 1.309 0.1995
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 19.19 on 33 degrees of freedom
Multiple R- squared : 0.6948 , Adjusted R- squared : 0.6578
F- statistic : 18.78 on 4 and 33 DF , p-value: 3.905e -08

I performed a variety of regression diagnostics, including the following (with the resulting graphs
shown following the R code):
> qqPlot (m.ols , id=list(n=6), line=" quartiles ")
1940 1941 1942 1943 1944 1945

10 11 12 13 14 15

> densityPlot ( rstudent (m.ols ))

> avPlots (m.ols)
> crPlots (m.ols)

> spreadLevelPlot (m.ols)

Copyright © 2021 by John Fox. 74 All rights reserved.



Suggested power transformation : -1.080299

> ncvTest (m.ols)
Non - constant Variance Score Test
Variance formula : ~ fitted . values
Chisquare = 12.10765 , Df = 1, p = 0.00050215

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

t Quantiles

S
tu

de
nt

iz
ed

 R
es

id
ua

ls
(m

.o
ls

)

1941

1945

19401942

1943

1944

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

rstudent(m.ols)
D

en
si

ty

Copyright © 2021 by John Fox. 75 All rights reserved.



−600 −200 0 200 400 600

−
40

−
20

0
20

40
60

tfr | others

fc
on

vi
ct

  |
 o

th
er

s

19411942

1934

1935

−40 −20 0 20 40 60 80

−
20

0
20

40

partic | others

fc
on

vi
ct

  |
 o

th
er

s

1941 1942
1943

1944

−40 −20 0 20 40

−
20

0
20

40

degrees | others

fc
on

vi
ct

  |
 o

th
er

s

1941
1942

1968

1943

−100 −50 0 50 100 150

−
40

−
20

0
20

40

mconvict | others

fc
on

vi
ct

  |
 o

th
er

s

1941

1942

1939

1946

Added−Variable Plots

Copyright © 2021 by John Fox. 76 All rights reserved.



2500 3000 3500

−
20

0
20

40
60

tfr

C
om

po
ne

nt
+

R
es

id
ua

l(f
co

nv
ic

t)

240 260 280 300 320 340

−
20

0
20

40

partic

C
om

po
ne

nt
+

R
es

id
ua

l(f
co

nv
ic

t)

20 40 60 80

−
40

−
20

0
20

40

degrees

C
om

po
ne

nt
+

R
es

id
ua

l(f
co

nv
ic

t)

700 800 900 1000

−
40

−
20

0
20

40

mconvict

C
om

po
ne

nt
+

R
es

id
ua

l(f
co

nv
ic

t)

Component + Residual Plots

60 80 100 120

0.
01

0.
05

0.
20

1.
00

Spread−Level Plot for
 m.ols

Fitted Values

A
bs

ol
ut

e 
S

tu
de

nt
iz

ed
 R

es
id

ua
ls

Copyright © 2021 by John Fox. 77 All rights reserved.



The most striking finding from the diagnostics is that there’s something unusual going on during
the early to mid-1940s—roughly the years of World War II—and that the years 1940–1943 appear
similar to each other as do the years 1944 and 1945. The problem with the war years was also
mentioned in the text; see in particular the time-series plot of residuals in Figure 16.6 (page 491).

The data set is small, and the risk of overfitting the data is high, but I decided to experiment with
creating two dummy regressors corresponding to these two periods. The resulting model produces
a noticeably different coefficient for post-secondary degrees, but in either case is the coefficient
large relative to its standard error:
> Hartnagel $war1 <- with(Hartnagel , year >= 1940 & year <= 1943)
> Hartnagel $war2 <- with(Hartnagel , year >= 1944 & year <= 1945)
> m.ols .2 <- update (m.ols , . ~ . + war1 + war2)
> compareCoefs (m.ols , m.ols .2)
Calls:
1: lm( formula = fconvict ~ tfr + partic + degrees + mconvict ,

data = Hartnagel )
2: lm( formula = fconvict ~ tfr + partic + degrees + mconvict

+ war1 + war2 , data = Hartnagel )

Model 1 Model 2
( Intercept ) 127.6 84.5
SE 60.0 27.8

tfr -0.04657 -0.03775
SE 0.00803 0.00356

partic 0.2534 0.2584
SE 0.1151 0.0826

degrees -0.2120 -0.0471
SE 0.2115 0.1452

mconvict 0.0591 0.0651
SE 0.0451 0.0190

war1TRUE 50.65
SE 5.71

war2TRUE -25.7
SE 10.1

The diagnostics for the respecified model are improved. Here, for example, are the test for
nonconstant error variance and the QQ plot of the studentized residuals:
> ncvTest (m.ols .2)
Non - constant Variance Score Test
Variance formula : ~ fitted . values
Chisquare = 0.467855 , Df = 1, p = 0.49398

> qqPlot (m.ols .2)
1932 1943

2 13

Copyright © 2021 by John Fox. 78 All rights reserved.



−2 −1 0 1 2
−

2
−

1
0

1
2

t Quantiles

S
tu

de
nt

iz
ed

 R
es

id
ua

ls
(m

.o
ls

.2
)

1943

1932

(b) Using the quadratic formula,

β =
−(−1.068)±

√
(−1.068)2 − 4× 0.5507× 1
2× 0.5507

The two roots resulting both have an imaginary component:

β1 = 0.9697− 0.9357i
β2 = 0.9697 + 0.9357i

The roots have the same modulus,
√

0.96972 + 0.93572 = 1.347 > 1.

(c) Unless you have access to an EGLS program, this problem requires nontrivial custom programming,
and so I should probably have starred it. For example, I’m unaware of an EGLS function for R.
To simplify the task, I wrote an R function for an AR(2) process for the errors, rather than for the
general case of AR(p) errors. I also didn’t try to make the program computationally efficient.
> egls2 <- function (X, y){
+ X <- cbind (1, X) # constant regressor
+ colnames (X)[1] <- " intercept "
+ n <- nrow(X)
+ ols <- lm(y ~ X - 1) # preliminary OLS fit
+ r <- as. vector (acf(ols$residuals , lag.max =2,
+ plot=FALSE)$acf )[2:3]
+ P <- diag (2)
+ P[1, 2] <- P[2, 1] <- r[1]
+ phi <- solve (P, r) # AR (2) parameters by Yule - Walker
+ rho <- numeric (n) # autocorrelations of errors to lag n - 1
+ rho [1] <- 1 # rho_0
+ rho [2] <- phi [1]/(1 - phi [2]) # rho_1
+ for (i in 3:n){ # rho_3 to rho_(n - 1)
+ rho[i] <- phi [1]*rho[i - 1] + phi [2]*rho[i - 2]
+ }
+ P <- diag(n) # matrix of error autocorrelations
+ for (i in 1:(n - 1)){
+ P[i, (i + 1):n] <- rho [2:(n - i + 1)]
+ }
+ P[ lower .tri(P)] <- rev(P[upper.tri(P)])
+ T <- chol( solve(P)) # GLS transformation

Copyright © 2021 by John Fox. 79 All rights reserved.



+ X <- T %*% X # transformed data
+ y <- T %*% y
+ result <- lm(y ~ X - 1) # GLS fit
+ result $phi <- phi
+ result
+ }

Applied to the Fox and Hartnagel regression, I get results very similar to those produced by
maximum-likelihood (cf., Equation 16.19 on page 493):
> m.egls <- with(Hartnagel ,
+ egls2( cbind(tfr , partic , degrees , mconvict ),
+ fconvict ))
> coef(m.egls) # estimates

Xintercept Xtfr Xpartic Xdegrees Xmconvict
85.10848214 -0.04002180 0.28338370 -0.20739153 0.07494638
> sqrt(diag(vcov(m.egls ))) # standard errors

Xintercept Xtfr Xpartic Xdegrees Xmconvict
59.746237062 0.009327557 0.112417552 0.207437858 0.035172106
> m.egls$phi # AR (2) parameter estimates
[1] 1.0566689 -0.5350862

Copyright © 2021 by John Fox. 80 All rights reserved.



Exercises for Chapter 17
Exercise 17.1*

Here’s a table showing the several measures for each of the five models:
Metric Effect Proportional Change Rate of Return Point Elasticity

Model ∂Y/∂X1 X1(∂Y/∂X1) (∂Y/∂X1)/Y (∂Y/∂X1)/× (X1/Y )
(a) Y = α+ β1X1 + β2X2 β1 β1X1 β1/Y β1X1/Y
(b) Y = α+ β1X1 + β2X2

1 + β3X2 β1 + 2β2X1 β1X1 + 2β2X2
1 (β1 + 2β2X1)/Y (β1X1 + 2β2X2

1 )/Y
(c) Y = α+ β1X1 + β2X2 + β3X1X2 β1 + β3X2 β1X1 + β3X1X2 (β1 + β3X2)/Y (β1X1 + β3X1X2)/Y
(d) Y = exp(α+ β1X1 + β2X2) β1 exp(Y ) β1X1 exp(Y ) β1 β1X1
(e) Y = αXβ1

1 Xβ2
2 β1Y/X1 β1Y β1/X1 β1

The simplest measure for model (a) is the metric effect; for (b) and (c) probably also the metric effect,
though this changes with the level of X1 in (b) and of X2 in (c); for (d) the instantaneous rate of return;
and for (e) the point elasticity.

The metric effect is interpretable as the instantaneous “effect” of increasing X1 by one unit holding
X2 constant. The effect of proportional change in X1 is the instantaneous effect of increasing X1 by
an amount equal to its size, holding X2 constant. The rate of return is the instantaneous effect of
increasing X1 by one unit, holding X2 constant, as a proportion of the size of Y . The point elasticity is
the approximate percentage change in Y for a one-percent increment in X1, holding X2 constant. I hope
that it’s clear that the language of “effect,” “change,” and “holding constant” doesn’t necessarily imply
a causal interpretation of the regression coefficient β1, but rather is adopted to avoid awkward language.
As well, when the partial relationship of Y to X1 is nonlinear holding X2 constant, instantaneous effects
are extrapolations based on the slope of the regression function in the direction of X1 at a particular
point.

Models (a), (b), and (c) are linear in the parameters and, assuming independent additive errors with
equal variances, could be fit by OLS regression. Assuming a multiplicative error and positive Y , model
(d) could be fit by OLS regression of log Y on X1 and X2. Assuming multiplicative errors and positive
Y , model (e) could be fit by OLS regression of log Y on logX1 and logX2.

Exercise 17.3

I wrote a simple R function that uses the wireframe() function from the standard lattice package to
draw 3D graphs of quadratic regression surfaces. My function takes the regression coefficients and the
values of X1 and X2 over which to plot as arguments:
> f <- function (beta0 =1, beta1 =1, beta2 =1, beta3 =1, beta4 =1, beta5 =1,
+ x1=seq(-1, 1, length =20) ,
+ x2=seq(-1, 1, length =20) ,
+ color=TRUE , ...){
+ grid <- expand .grid(x1=x1 , x2=x2)
+ grid$y <- with(grid , beta0 + beta1 *x1 + beta2*x2 + beta3*x1^2 +
+ beta4 *x2^2 + beta5*x1*x2)
+ lattice :: wireframe (y ~ x1 + x2 , data=grid , xlab= expression (X[1]) ,
+ ylab= expression (X[2]) , zlab="E(Y)", drape=color ,
+ main= bquote (E(Y) == .( beta0) + .( beta1)~X[1] + .( beta2)~X[2]
+ + .( beta3)~X[1]^2 + .( beta4)~X[2]^2
+ + .( beta5)~X[1]~X[2]) ,
+ colorkey =FALSE , ...)
+ }

The question is open-ended and so I’ll show three examples, for E(Y ) = 1+X1 +X2 +X2
1 +X2

2 +X1X2;
E(Y ) = 1−X2

1 −X2
2 ; and E(Y ) = 1 +X1 +X2 +X2

1 +X2
2 + 2X1X2. In the first two cases, X1 and

X2 range from −1 to 1; in the third case, they range from 0 to 10. The equations appear (in slightly
crude form) in the labels above the graphs:
> f()

Copyright © 2021 by John Fox. 81 All rights reserved.



> f(beta1 =0, beta2 =0, beta3 = -1, beta4 = -1, beta5 = 0)
> f(beta5 =2, x1=seq (0, 10, length =20) , x2=seq (0, 10, length =20))

E(Y) = 1 + 1 X1 + 1 X2 + 1 X1
2 + 1 X2

2 + 1 X1 X2

X1
X2

E(Y)

E(Y) = 1 + 0 X1 + 0 X2 + −1 X1
2 + −1 X2

2 + 0 X1 X2

X1
X2

E(Y)

E(Y) = 1 + 1 X1 + 1 X2 + 1 X1
2 + 1 X2

2 + 2 X1 X2

X1
X2

E(Y)

The graph of E(Y ) = 1 +X1 +X2 +X2
1 +X2

2 +X1X2 is similar to the graph in Figure 17.1 (a). The
graph of E(Y ) = 1 −X2

1 −X2
2 is concave downwards (“spills water”) rather than concave upwards,

and the partial relationship of Y to each X doesn’t change its shape with the value of the other X
(that is the lines drawn on the regression surface in the direction of each X are parallel). The graph of
E(Y ) = 1 +X1 +X2 +X2

1 +X2
2 + 2X1X2 for non-negative values of X1 and X2 is monotone increasing

in X1 and X2.

I encourage you to examine some other examples, either using my f() function or something else to
draw the graphs.

Exercise 17.5*

Let’s set X2 to two different arbitrary values, x′2 and x′′2 . Then

µ′ = β0 + β1X1 + β2x
′
2 + β3X1x

′
2

µ′′ = β0 + β1X1 + β2x
′′
2 + +β3X1x

′′
2

The lines cross when µ′ = µ′′, that is for

β0 + β1X1 + β2x
′
2 + β3X1x

′
2 = β0 + β1X1 + β2x

′′
2 + β3X1x

′′
2

Subtracting β0 + β1X1 from both sides and factoring out the values of X2, we have

x′2(β2 + β3X1) = x′′2(β2 + β3X1)

The only way this can be true for all pairs of values x′2, x′′2 of X2 is if β2 + β3X1 = 0, which implies
that x1 = −β3/β2 is the value of X1 above which the lines cross.

Exercise 17.7

The Canadian interprovincial migration data are in the Migration data set in the carData package
for R. This data set isn’t in the tabular form of Tables 17.4 and 17.5, but rather has one row for each of
the 90 migration streams:

Copyright © 2021 by John Fox. 82 All rights reserved.



> library ("car") # for data and Tapply ()
Loading required package : carData

> head( Migration )
source destination migrants distance pops66 pops71 popd66 popd71

1 PEI NFLD 255 924 108535 111641 493396 522104
2 NS NFLD 2380 952 756039 788960 493396 522104
3 NB NFLD 1140 1119 616788 534557 493396 522104
4 QUE NFLD 2145 1641 5780845 6027764 493396 522104
5 ONT NFLD 6295 1996 6960870 7703106 493396 522104
6 MAN NFLD 215 3159 963066 988247 493396 522104

> tail( Migration )
source destination migrants distance pops66 pops71 popd66 popd71

85 NB BC 3115 3719 616788 534557 1873674 2184621
86 QUE BC 16740 3197 5780845 6027764 1873674 2184621
87 ONT BC 47395 3059 6960870 7703106 1873674 2184621
88 MAN BC 26910 1679 963066 988247 1873674 2184621
89 SASK BC 29920 1297 955344 926242 1873674 2184621
90 ALTA BC 58915 987 1463203 1627874 1873674 2184621

I begin with some data management to average 1966 and 1971 provincial population, as suggested in
the exercise, and to order the provinces (roughly) from west to east rather than alphabetically. Then,
using lm(), I fit the gravity model to the data by least-squares:
> Migration $ source <- factor ( Migration $source , # west to east
+ levels =c("BC", "ALTA", "SASK", "MAN", "ONT",
+ "QUE", "NB", "PEI", "NS", "NFLD"))
> Migration $ destination <- factor ( Migration $ destination ,
+ levels =c("BC", "ALTA", "SASK", "MAN", "ONT",
+ "QUE", "NB", "PEI", "NS", "NFLD"))
> Migration $pops <- rowMeans ( Migration [, c(" pops66 ", " pops71 ")])
> Migration $popd <- rowMeans ( Migration [, c(" popd66 ", " popd71 ")])
> m <- lm(log( migrants ) ~ log(pops) + log(popd) + I(-log( distance )),
+ data= Migration )
> summary (m)

Call:
lm( formula = log( migrants ) ~ log(pops) + log(popd) + I(-log( distance )),

data = Migration )

Residuals :
Min 1Q Median 3Q Max

-1.8381 -0.6738 0.1105 0.4699 1.8691

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -8.32094 1.66914 -4.985 3.18e -06 ***
log(pops) 0.76064 0.07439 10.226 < 2e -16 ***
log(popd) 0.87620 0.07439 11.779 < 2e -16 ***
I(-log( distance )) 0.88379 0.10483 8.431 7.08e -13 ***
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8098 on 86 degrees of freedom
Multiple R- squared : 0.7587 , Adjusted R- squared : 0.7503
F- statistic : 90.16 on 3 and 86 DF , p-value: < 2.2e -16

Copyright © 2021 by John Fox. 83 All rights reserved.



Thus, the estimated model is

Yij = exp(−8.321)
P 0.7606
i P 0.8762

j

D0.8838
ij

= 0.0002433
P 0.7606
i P 0.8762

j

D0.8838
ij

’

The R2 of .76 may seem impressive, but for a model of this type, it indicates potentially important
predictive failure. Here, for example, is a plot of fitted values (on the log scale) against log-migration
(the response in the linearized model):
> library ("MASS") # for eqscplot ()
> eqscplot (log( Migration $ migrants ), fitted (m))
> abline (0, 1, lty =2) # y = x

4 6 8 10 12

6
7

8
9

10
11

12

log(Migration$migrants)

fit
te

d(
m

)

Some of the departures of the points from the line represent substantial failures to predict migration
when expressed on the scale of numbers of migrants:
> Migration $fit <- exp( fitted (m)) # fitted values on population scale
> Migration $res <- with(Migration , migrants - fit) # residuals
>
> table <- round ( Tapply (res ~ source + destination , c, data= Migration ))
> table <- cbind (table , sum= rowSums (table , na.rm=TRUE ))
> table <- rbind (table , sum= colSums (table , na.rm=TRUE ))
> names( dimnames ( table )) <- c(" source ", " destination ")
> table

destination
source BC ALTA SASK MAN ONT QUE NB PEI NS NFLD sum

BC NA 18637 1449 2496 8064 -5714 5 67 1056 -420 25640
ALTA 49495 NA 2074 1804 3808 -7573 -60 -75 590 -377 49686

Copyright © 2021 by John Fox. 84 All rights reserved.



SASK 24848 32901 NA 8499 -114 -7709 -488 -113 -286 -435 57103
MAN 22759 11730 1592 NA 8570 -6932 247 155 502 -490 38133
ONT 36067 11983 -2556 6193 NA -145386 1123 933 7584 1387 -82672
QUE 7500 -1567 -5890 -5060 -99236 NA -5887 -1764 -6938 -2804 -121646
NB 1739 816 -530 124 3345 -11989 NA 154 3003 -42 -3380
PEI 231 152 -142 -51 114 -3356 -64 NA -462 -143 -3721
NS 4472 1773 -532 296 11176 -12130 2506 -138 NA 675 8098
NFLD 464 -107 -386 -81 11179 -4336 541 7 1551 NA 8832
sum 147575 76318 -4921 14220 -53094 -205125 -2077 -774 6600 -2649 -23927

The model does a particularly poor job in some of the provinces, such as British Columbia and
Quebec. Adding dummy variables for the provinces of origin or destination (or both) won’t work,
because provincial population and log-population would be perfectly collinear with either set of dummy
regressors. A possibly better strategy would be to add explanatory variables based on characteristics of
the provinces in addition to their population, such as unemployment rates, living costs, and wage rates.

Exercise 17.9

I’ll use the data read in the preceding exercise, and again use the R nls() function to fit the model. To
fit the logistic-growth model with multiplicative errors, I just take the log of both sides of the model:
> m <- nls(log( population ) ~ log(beta1/(1 + exp(beta2 + beta3 * decade ))),
+ data=US , start =c(beta1 =350 , beta2 =4.5 , beta3 = -0.3))
> summary (m)

Formula : log( population ) ~ log(beta1/(1 + exp(beta2 + beta3 * decade )))

Parameters :
Estimate Std. Error t value Pr(>|t|)

beta1 302.71023 16.63508 18.20 6.5e -14 ***
beta2 4.25184 0.05466 77.79 < 2e -16 ***
beta3 -0.28378 0.00665 -42.67 < 2e -16 ***
---
Signif . codes : 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.07831 on 20 degrees of freedom

Number of iterations to convergence : 3
Achieved convergence tolerance : 3.241e -06

The estimated parameters are quite close to those produced by assuming additive errors; except for
SE(β̂1), the standard errors of the parameter estimates are also similar.

Here are plots similar to those in Figure 17.9 (page 520) in the text. The plot for population is on the
scale of millions of people, while the residuals are plotted on the log scale:
> plot( population ~ year , data=US)
> lines(US$year , exp( fitted (m)), lwd =2, main="(a)")
> plot(US$year , residuals (m), type="b", main="(b)")
> abline (h=0, lty =2)

> print(acf( residuals (m), lag.max =5))

Autocorrelations of series 'residuals (m)', by lag

0 1 2 3 4 5
1.000 0.753 0.438 0.154 -0.133 -0.402

Copyright © 2021 by John Fox. 85 All rights reserved.



1800 1850 1900 1950 2000

0
50

10
0

20
0

30
0

year

po
pu

la
tio

n

1800 1850 1900 1950 2000

−
0.

15
−

0.
05

0.
05

0.
15

(b)

US$year

re
si

du
al

s(
m

)

In comparison to the model with additive errors, the residuals are even more autocorrelated and the fitted
model does a poorer job in later decades (but a better job in the earlier decades), substantially underes-
timating population at the last two Censuses. Neither model seems entirely adequate—U.S. population
growth is more complicated than logistic growth.

Exercise 17.11

I’ll begin by using the boxTidwell() function in the car package for R to reproduce the results in
Section 12.5.2. For comparison with the results reported below, I also fit the regression by linear
least-squares after transforming age and education:
> library ("car") # for boxTidwell ()
Loading required package : carData
> url <- paste(" https:// socialsciences . mcmaster .ca", "jfox", "Books",
+ "Applied -Regression -3E", " datasets ", "SLID - Ontario .txt",
+ sep="/")
> SLID <- read. table (url , header =TRUE)

> boxTidwell (log( compositeHourlyWages ) ~
+ I(age - 15) + I( yearsEducation + 1), ~ sex ,
+ data=SLID)

MLE of lambda Score Statistic (z) Pr(>|z|)
I(age - 15) 0.050965 -20.3694 < 2.2e -16 ***
I( yearsEducation + 1) 1.893103 4.4761 7.601e -06 ***
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary (lm(log( compositeHourlyWages ) ~
+ I(( age - 15)^0.050965) +
+ I(( yearsEducation + 1)^1.893103) + sex ,
+ data=SLID ))

Call:
lm( formula = log( compositeHourlyWages ) ~ I(( age - 15)^0.050965) +

I(( yearsEducation + 1)^1.893103) + sex , data = SLID)

Residuals :
Min 1Q Median 3Q Max

-2.28198 -0.24886 0.02405 0.26063 1.76219

Copyright © 2021 by John Fox. 86 All rights reserved.



Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -4.1428856 0.1666483 -24.86 <2e -16 ***
I(( age - 15)^0.050965) 5.4113341 0.1433974 37.74 <2e -16 ***
I(( yearsEducation + 1)^1.893103) 0.0024334 0.0001028 23.67 <2e -16 ***
sexMale 0.2209610 0.0126427 17.48 <2e -16 ***
---
Signif . codes : 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3996 on 3993 degrees of freedom
Multiple R- squared : 0.3696 , Adjusted R- squared : 0.3691
F- statistic : 780.4 on 3 and 3993 DF , p-value: < 2.2e -16

Then, I’ll use the nls() function to fit the Box-Tidwell model by general nonlinear least-squares,
simultaneously estimating the transformation and regression parameters:
> SLID$male <- with(SLID , as. numeric (sex == "Male"))
> coef(lm(log( compositeHourlyWages ) ~
+ I(age - 15) + I( yearsEducation + 1) + male , data=SLID ))

( Intercept ) I(age - 15) I( yearsEducation + 1)
1.31546388 0.01815485 0.05587644

male
0.22449593

> m.nls <- nls(log( compositeHourlyWages ) ~ beta0 +
+ beta1 *(age - 15)^ gamma1 +
+ beta2 *( yearsEducation + 1)^ gamma2 +
+ beta3 *male , data=SLID ,
+ start=c(beta0 =1.3 , beta1 =0.018 , beta2 =0.056 , beta3 =0.22 ,
+ gamma1 =1, gamma2 =1),
+ control =nls. control ( maxiter =1000))
> summary (m.nls)

Formula : log( compositeHourlyWages ) ~ beta0 + beta1 * (age - 15)^ gamma1 +
beta2 * ( yearsEducation + 1)^ gamma2 + beta3 * male

Parameters :
Estimate Std. Error t value Pr(>|t|)

beta0 -4.142732 6.295615 -0.658 0.511
beta1 5.411181 6.270220 0.863 0.388
beta2 0.002433 0.002236 1.088 0.277
beta3 0.220961 0.012668 17.442 < 2e -16 ***
gamma1 0.050966 0.052556 0.970 0.332
gamma2 1.893101 0.284275 6.659 3.12e -11 ***
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3997 on 3991 degrees of freedom

Number of iterations to convergence : 91
Achieved convergence tolerance : 5e -06

In order for nls() to converge, I had to allow more than the default 50 iterations; as it turned out,
91 iterations were required. To provide start values for the Gauss-Newton algorithm employed by
nls(), I performed a preliminary linear least-squares regression and started the power-transformation
parameters at values of 1.

Within rounding error, I get the same estimated transformation parameters and regression coefficients as
before, but the regression-coefficient standard errors for age and education produced by simultaneously

Copyright © 2021 by John Fox. 87 All rights reserved.



estimating the transformations and regression coefficients are much larger. Arguably, this doesn’t really
make sense, because the regression coefficients for age and education don’t have defined scales until the
transformations are selected, and the values of the coefficients thus naturally depend upon the values of
the powers.

An advantage of nonlinear least-squares is that we get standard errors for the ML estimates of the
transformation parameters. Applying nonlinear least-squares to the Box-Tidwell model in this example
required much more computation, although “much more” is a relative term, in that on my computer Box
and Tidwell’s procedure took 0.02 seconds, while nonlinear least-squares took 0.41 seconds. For some
problems, however, we might run into convergence issues in applying general nonlinear least-squares to
the Box-Tidwell model.

If we want standard errors for the transformation parameters, one approach would be to use Box and
Tidwell’s algorithm followed by linear least-squares to obtain the estimates, and then to employ these
as start values for nonlinear least-squares. Convergence then should be nearly instantaneous.

Copyright © 2021 by John Fox. 88 All rights reserved.



Exercises for Chapter 18
Exercise 18.1

Kernel-regression programs that I’m aware of are somewhat more complicated than the simple version
described in this chapter. I therefore wrote a simple kernel regression function for R that uses the
tricube kernel, and I applied it to the Canadian occupational prestige data:
> kernelRegression <- function (x, y, span =0.5){
+ tricube <- function (z) { # weight function
+ ifelse (abs(z) < 1, (1 - (abs(z))^3)^3 , 0)
+ }
+ n <- length (x)
+ n.span <- round(span*n) # no. within span
+ yhat <- numeric (n)
+ order <- order (x)
+ x <- x[ order]
+ y <- y[ order]
+ for (i in 1:n){ # kernel estimate at each x
+ x0 <- x[i]
+ dist <- abs(x - x0)
+ h <- sort(dist )[n.span] # window half -width
+ yhat[i] <- weighted .mean(y, tricube ((x - x0)/h))
+ }
+ list(x=x, y=yhat)
+ }

> library (" carData ") # for Prestige data set

> par(mfrow=c(2, 2))

> plot( prestige ~ income , data=Prestige , main="(a) span = 0.3",
+ cex.main =1, col=" darkgray ")
> with(Prestige ,
+ lines( kernelRegression (income , prestige , span =0.3) , lwd =2))

> plot( prestige ~ income , data=Prestige , main="(b) span = 0.4",
+ cex.main =1, col=" darkgray ")
> with(Prestige ,
+ lines( kernelRegression (income , prestige , span =0.4) , lwd =2))

> plot( prestige ~ income , data=Prestige , main="(c) span = 0.5",
+ cex.main =1, col=" darkgray ")
> with(Prestige ,
+ lines( kernelRegression (income , prestige , span =0.5) , lwd =2))

> plot( prestige ~ income , data=Prestige , main="(d) span = 0.6",
+ cex.main =1, col=" darkgray ")
> with(Prestige ,
+ lines( kernelRegression (income , prestige , span =0.6) , lwd =2))

Copyright © 2021 by John Fox. 89 All rights reserved.



0 5000 10000 15000 20000 25000

20
40

60
80

(a) span = 0.3

income

pr
es

tig
e

0 5000 10000 15000 20000 25000

20
40

60
80

(b) span = 0.4

income

pr
es

tig
e

0 5000 10000 15000 20000 25000

20
40

60
80

(c) span = 0.5

income

pr
es

tig
e

0 5000 10000 15000 20000 25000

20
40

60
80

(d) span = 0.6

income

pr
es

tig
e

All of the kernel estimates show boundary bias as the far left and right of the scatterplots, but a span of
0.4 or 0.5 seems reasonable. Figure 18.2 (d) on page 531 uses a span of 0.41, nearly identical to panel
(b) in the figure above.

Exercise 18.3

I used the kernel regression and local-linear regression functions for R described in the preceding two
exercises. I found that a span of 0.3 was a reasonable choice for both estimators:
> set.seed (753485254) # for reproducibility

> f <- function (x) 100 - 5*(x/10 - 5) + (x/10 - 5)^3

> n <- 100
> x <- runif(n, min =0, max =100)
> eps <- rnorm(n, mean =0, sd =20)
> y <- f(x) + eps

> par(mfrow =c(1, 2))

> plot(x, y, col=" darkgray ",

Copyright © 2021 by John Fox. 90 All rights reserved.



+ main="(a) kernel estimator , span = 0.3")
> x0 <- seq (0, 100, length =1000)
> lines(x0 , f(x0), lwd =2, lty =2)
> lines( kernelRegression (x, y, span =0.3) , lwd =2)

> plot(x, y, col=" darkgray ",
+ main="(b) local - linear estimator , span = 0.3")
> x0 <- seq (0, 100, length =1000)
> lines(x0 , f(x0), lwd =2, lty =2)
> lines( localRegression (x, y, span =0.3) , lwd =2)

0 20 40 60 80 100

0
50

10
0

15
0

20
0

(a) kernel estimator, span = 0.3

x

y

0 20 40 60 80 100

0
50

10
0

15
0

20
0

(b) local−linear estimator, span = 0.3

x

y

The greater “bias” of the kernel estimator is generally apparent, particularly near the boundaries of X.

Exercise 18.5*

Exercise 18.3 isn’t starred but it’s necessary to do it to generate the data and also to pick a span by
visual trial-and-error. Once again, I used R for the computations:
> f <- function (x) 100 - 5*(x/10 - 5) + (x/10 - 5)^3
> set.seed (753485254) # for reproducibility
> n <- 100
> x <- sort( runif(n, 0, 100))
> y <- f(x) + rnorm (n, mean =0, sd =20)
> mu <- f(x)
> spans <- seq (.05 , .95, by =.01)
> ASEs <- rep (0, length (spans ))
> names(ASEs) <- as. character (spans)
> for (span in spans ){
+ yhat <- fitted (loess(y ~ x, span=span , degree =1, family =" gaussian "))
+ ASEs[as. character (span )] <- sum (( yhat - mu )^2)/n
+ }
> spans[which.min(ASEs )]
[1] .38

Copyright © 2021 by John Fox. 91 All rights reserved.



0.2 0.4 0.6 0.8

50
10

0
15

0
20

0
25

0
30

0
35

0

span s

A
S

E
(s

)

I used the loess() function to produce the local-linear fits to the data for spans s between .05 and .95
at an interval of .01. The minimum ASE is at s = .38.

Here’s a scatterplot of the data showing the true regression function f(x) along with the local-linear
fits at spans of .38 and .5—the last is the value I picked by trial-and-error:
> plot(x, y)
> lines(x, mu , lwd =2)
> lines(loess. smooth (x, y, span =.5, family =" gaussian "), lwd =2, lty =2)
> lines(loess. smooth (x, y, span =.38 , family =" gaussian "), lwd =2, lty =3)
> legend (" bottomright ", lty =1:3 , lwd =2,
+ legend =c("f(x)", "s = .5", "s = .3"), inset =.02)

0 20 40 60 80 100

0
50

10
0

15
0

20
0

x

y

f(x)
s = 0.5
s = 0.38

Exercise 18.7*

Copyright © 2021 by John Fox. 92 All rights reserved.



I performed the computations for this problem in R, using the localRegression() function written
for Exercise 18.2 for the local-linear regression and the standard lm() function for the polynomial
regressions.

(a) The Canadian occupational prestige data are in the carData package for R:
> library (" carData ") # for Prestige data set

> plot( prestige ~ income , data=Prestige , col=" darkgray ")
> with(Prestige , lines( localRegression (income , prestige , span =0.6) ,
+ lwd =2))

> m <- lm( prestige ~ poly(income , 4), data= Prestige )
> x0 <- with(Prestige , seq(min( income ), max( income ), length =1000))
> lines(x0 , predict (m, newdata =data. frame( income =x0)),
+ lty =2, lwd =2)

> legend (" bottomright ", inset =0.02 , lty =1:2 , lwd =2,
+ legend =c("local linear ", " polynomial "))

0 5000 10000 15000 20000 25000

20
40

60
80

income

pr
es

tig
e

local linear
polynomial

(b) The United Nations data are read from the website for the text:
> url <- paste("https:// socialsciences . mcmaster .ca", "jfox", "Books",
+ "Applied -Regression -3E", " datasets ", " UnitedNations .txt",
+ sep="/")
> UN <- read. table (url , header =TRUE)
> UN <- na.omit(UN[, c(" infantMortality ", " GDPperCapita ")])

> plot( infantMortality ~ GDPperCapita , data=UN , col=" darkgray ")
> with(UN , lines ( localRegression ( GDPperCapita , infantMortality ,
+ span =0.5) ,
+ lwd =2))

Copyright © 2021 by John Fox. 93 All rights reserved.



> m <- lm( infantMortality ~ poly( GDPperCapita , 5), data=UN)
> x0 <- with(UN , seq(min( GDPperCapita ), max( GDPperCapita ), length =1000))
> lines(x0 , predict (m, newdata =data. frame( GDPperCapita =x0)),
+ lty =2, lwd =2)

> legend (" topright ", inset =0.02 , lty =1:2 , lwd =2,
+ legend =c("local linear ", " polynomial "))

0 10000 20000 30000 40000

0
50

10
0

15
0

GDPperCapita

in
fa

nt
M

or
ta

lit
y

local linear
polynomial

(c) The local-linear regression and fourth-order polynomial produce similar fits to the Canadian
occupational prestige data, though the latter dips down slightly at the far right, which isn’t
plausible. The fifth-order polynomial fit to the UN data, however, produces a very wild fit at all
but the lowest levels of GDP per capita.

Copyright © 2021 by John Fox. 94 All rights reserved.



Exercises for Chapter 19
Exercise 19.1*

We want to minimize f(µ̂) =
∑n
i=1 |Yi − µ̂|. Differentiating f(µ̂),

f ′(µ̂) =
∑ d|Yi − µ̂|

dµ̂

Setting the derivative to 0 and solving for µ̂ minimizes the sum of absolute deviations.

The derivative of the absolute-value function, say g(z) = |z], is

g′(z) =

 −1 for z < 0
undefined for z = 0

1 for z > 0

So f ′(µ̂) = 0 when there are equal numbers of negative and positive deviations from µ̂.

Suppose that n is even. Then we want a value of µ̂ with n/2 observations below it and n/2 observations
above it. That value, of course, is µ̂ = median(Y ), with the caveat that any value of Y between Y(n/2)
and Y(n/2+1) will serve (where the parenthetical subscripts represent order statistics—that is, values in
the ordered data); the median is conventionally taken as

(
Y(n/2) + Y(n/2+1)

)
/2. If we move µ̂ below

Y(n/2) or above Y(n/2+1), however, we’ll increase either the number of positive deviations or the number
of negative deviations, and the sum of the +1s and −1s will no longer be 0.

The situation is slightly different if n is odd. Then the median is Y([n+1]/2), with n/2 positive deviations,
n/2 negative deviations, and one 0 deviation (for which the derivative is undefined). Again, if we move
µ̂ either left or right from the median, we increase either the number of positive deviations or the
number of negative deviations.

Exercise 19.3

(a) and (b) I used the lm() and rlm() functions in R (the latter in the MASS package) to compute
the least-squares and Huber M-estimator regression lines. The least-squares line is pulled towards
the outlier, but the robust-regression line isn’t affected by it at all. Anscombe’s data sets are
supplied by R in anscombe; this is the third of the three Anscombe data sets.
> x <- anscombe [, "x3"]
> y <- anscombe [, "y3"]

> plot(y ~ x)
> abline (lm(y ~ x), lwd =2)

> library ("MASS") # for rlm ()
> abline (rlm(y ~ x), lty =2, lwd =2)

> legend (" topleft ", inset =0.02 , lty =1:2 , lwd =2,
+ legend =c("least - squares ", "Huber M- estimator "))

Copyright © 2021 by John Fox. 95 All rights reserved.



4 6 8 10 12 14

6
8

10
12

x

y

least−squares
Huber M−estimator

(c) First, I’ll verify the results stated in the exercise about what happens when the third point is
omitted:
> (m <- lm(y ~ x, subset = -3))

Call:
lm( formula = y ~ x, subset = -3)

Coefficients :
( Intercept ) x

4.0056 0.3454

> y[3] - predict (m, newdata =data. frame(x=x[3]))
1

4.244286

Then I’ll refit the least-squares and robust regressions with the two more high-leverage X-values
and the corresponding outliers:
> y. <- y
> x. <- x
> x.[3] <- 23
> y.[3] <- 4 + 0.345*23 + 4.24

> par(mfrow=c(1, 2))

> plot(y. ~ x.)
> abline (lm(y. ~ x.), lwd =2)
> abline (rlm(y. ~ x., maxit =100) , lty =2, lwd =2)
> legend (" topleft ", inset =0.02 , lty =1:2 , lwd =2,
+ legend =c("least - squares ", "Huber M- estimator "))

> y.. <- y

Copyright © 2021 by John Fox. 96 All rights reserved.



> x.. <- x
> x..[3] <- 33
> y..[3] <- 4 + 0.345 *33 + 4.24

> plot(y.. ~ x..)
> abline (lm(y.. ~ x..), lwd =2, col="blue")
> abline (rlm(y.. ~ x.., maxit =100) , lty =2, lwd =2, col=" magenta ")
> legend (" topleft ", inset =0.02 , lty =1:2 , lwd =2,
+ col=c("blue", " magenta "),
+ legend =c("least - squares ", "Huber M- estimator "))

5 10 15 20

6
8

10
12

14
16

x.

y.

least−squares
Huber M−estimator

5 10 15 20 25 30

6
8

10
12

14
16

18
20

x..

y.
.

least−squares
Huber M−estimator

To get the Huber M-estimator to converge in both of these cases, I had to increase the maximum
number of iterations, which defaults to 20. In the less extreme case (at the left), the robust
regression estimator still ignores the outlier, but in the more extreme case, the robust regression
is as bad as least-squares—the two regression lines coincide, and so I used different colors to
differentiate them.

(d) I use the ltsReg() function in the robustbase R package to fit the LTS estimator:
> library (" robustbase ")

> par(mfrow=c(1, 2))

> plot(y. ~ x.)
> abline (lm(y. ~ x.), lwd =2)
> abline ( ltsReg (y. ~ x.), lty =2, lwd =2)
> legend (" topleft ", inset =0.02 , lty =1:2 , lwd =2,
+ legend =c("least - squares ", "LTS estimator "))

> plot(y.. ~ x..)
> abline (lm(y.. ~ x..), lwd =2)
> abline ( ltsReg (y. ~ x.), lty =2, lwd =2)

Copyright © 2021 by John Fox. 97 All rights reserved.



5 10 15 20

6
8

10
12

14
16

x.

y.
least−squares
LTS estimator

5 10 15 20 25 30

6
8

10
12

14
16

18
20

x..

y.
.

The rlm() function can fit the MM estimator:
> par( mfrow=c(1, 2))

> plot(y. ~ x.)
> abline (lm(y. ~ x.), lwd =2)
> abline (rlm(y. ~ x., method ="MM"), lty =2, lwd =2)
> legend (" topleft ", inset =0.02 , lty =1:2 , lwd =2,
+ legend =c("least - squares ", "MM - estimator "))

> plot(y.. ~ x..)
> abline (lm(y.. ~ x..) , lwd =2)
> abline (rlm(y.. ~ x.., method ="MM"), lty =2, lwd =2)

5 10 15 20

6
8

10
12

14
16

x.

y.

least−squares
MM−estimator

5 10 15 20 25 30

6
8

10
12

14
16

18
20

x..

y.
.

Both the LTS and the MM estimator completely ignore the outlier, even in the higher-leverage
case, and the MM estimator converges in fewer than 20 iterations in both cases.

Exercise 19.5

Copyright © 2021 by John Fox. 98 All rights reserved.



I start by using the standard R glm() function to fit the Poisson model by maximum likelihood,
reproducing the results in Table 15.3, and refitting the model without the first observation:
> library ("car") # for Ornstein data and compareCoefs ()
Loading required package : carData

> m.ml <- glm( interlocks ~ ., data=Ornstein , family = poisson )
> m.ml.1 <- update (m.ml , subset =-1)

The coefficients from these regressions are shown below, in comparison to those produced by the LTS
estimator.

A note on the comparison with Table 15.3: In the text, assets are scaled in 100s of millions of dollars,
while here they are in millions of dollars, and so the reported coefficients differ by a factor of 100. As
well, the baseline categories of the dummy regressors for the factors sector and nation of control are
different in the two regressions. Because the focus here is on the comparison between the ML and LTS
estimators, I haven’t bothered to adjust for these inessential differences.

Next, I use the glmrob() function in the robustbase R package to compute the LTS estimator. I fit
two versions of the LTS estimator: The first computes robustness weights based on residuals, similar to
the M estimator, and the second additionally employs weights that are inversely related to hatvalues,
down-weighting high-leverage observations; the two sets of weight are multiplied.
> library (" robustbase ") # for glmrob ()

> m.rob <- glmrob ( interlocks ~ ., data=Ornstein , family = poisson )

> m.rob.hat <- glmrob ( interlocks ~ ., data=Ornstein , family =poisson ,
+ weights .on.x="hat")

> compareCoefs (m.ml , m.ml.1, m.rob , m.rob.hat)
Calls:
1: glm( formula = interlocks ~ ., family = poisson , data = Ornstein )
2: glm( formula = interlocks ~ ., family = poisson , data = Ornstein ,

subset = -1)
3: glmrob ( formula = interlocks ~ ., family = poisson , data = Ornstein )
4: glmrob ( formula = interlocks ~ ., family = poisson , data = Ornstein ,

weights .on.x = "hat")

Model 1 Model 2 Model 3 Model 4
( Intercept ) 2.3246 2.3119 2.0680 2.0576
SE 0.0519 0.0520 0.0604 0.0605

assets 2.08e -05 2.60e -05 2.04e -05 2.28e -05
SE 1.20e -06 1.43e -06 1.20e -06 1.24e -06

sectorBNK -0.4092 -0.7487 -0.0351 -0.1919
SE 0.1560 0.1689 0.1582 0.1639

sectorCON -0.620 -0.621 -1.091 -1.088
SE 0.212 0.212 0.298 0.296

sectorFIN 0.6770 0.6085 0.8817 0.8560
SE 0.0688 0.0697 0.0764 0.0767

sectorHLD 0.208 0.201 0.113 0.117
SE 0.119 0.119 0.144 0.144

sectorMAN 0.0526 0.0516 -0.3398 -0.3230
SE 0.0755 0.0756 0.0982 0.0980

Copyright © 2021 by John Fox. 99 All rights reserved.



sectorMER 0.1777 0.1787 0.1405 0.1470
SE 0.0865 0.0866 0.1022 0.1023

sectorMIN 0.6211 0.6014 0.7182 0.7108
SE 0.0669 0.0670 0.0760 0.0762

sectorTRN 0.6778 0.6282 0.8274 0.7882
SE 0.0748 0.0754 0.0838 0.0845

sectorWOD 0.7116 0.7078 0.9021 0.9167
SE 0.0753 0.0753 0.0832 0.0830

nationOTH -0.1632 -0.1470 0.0354 0.0554
SE 0.0736 0.0738 0.0777 0.0776

nationUK -0.5771 -0.5625 -0.5487 -0.5291
SE 0.0890 0.0891 0.1005 0.0999

nationUS -0.8259 -0.8164 -0.8270 -0.8285
SE 0.0490 0.0491 0.0564 0.0567

Without leverage-based weights, the LTS estimator of the assets coefficient is not very different from
the ML estimator—recall that the first observation is at a high-leverage point. The coefficient of assets
in the LTS regression with leverage-based weights is larger, but not as large as the ML estimator of
this coefficient when the first case is omitted. There are differences in some of the dummy-regressor
coefficients for both LTS estimators in comparison to the ML estimator, with or without the first
observation removed. I don’t want to push this example too hard because of the clear deficiencies of
the model, mentioned in the exercise and discussed in Chapter 15. The reader may wish, for example,
to repeat the ML and LTS regressions with assets log-transformed.

To get some insight into what the LTS estimators are doing, I plotted the observation weights that they
computed:
> par(mfrow=c(1, 2))

> plot(m.rob$w.r, type="h", ylab=" Weights ",
+ col= ifelse (m.rob$w.r < 0.3, "black", "gray"),
+ main="(a) Robustness Weights ")

> wt <- m.rob.hat$w.r*m.rob.hat$w.x
> plot(wt , type="h", ylab=" Weights ",
+ col= ifelse (wt < 0.3, "black", "gray"),
+ main="(b) Robustness * Leverage Weights ")

Copyright © 2021 by John Fox. 100 All rights reserved.



0 50 100 150 200 250

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Robustness Weights

Index

W
ei

gh
ts

0 50 100 150 200 250

0.
2

0.
4

0.
6

0.
8

(b) Robustness * Leverage Weights

Index

W
ei

gh
ts

To clarify these plots, I arbitrarily colored weights < 0.3 black. It’s clear that the first observation gets
relatively low weight in the first LTS regression, though some others have even smaller weights. In the
second regression, the first observation gets the smallest weight, but there are others that have small
weights as well, accounting for the differences between the leverage-based LTS estimator and the ML
estimator with the first observation removed.

Copyright © 2021 by John Fox. 101 All rights reserved.



Exercises for Chapter 20
Exercise 20.1

(a) It’s simple to use the cor() function in R for this computation:
> Data <- read. table( header =TRUE , text="
+ x1 x2 x3
+ 1 1 NA
+ 1 NA 1
+ -1 -1 NA
+ -1 NA -1
+ NA 1 -1
+ NA -1 1
+ 5 NA NA
+ ")

> cor(Data , use=" pairwise . complete .obs")
x1 x2 x3

x1 1 1 1
x2 1 1 -1
x3 1 -1 1

Thus, the available-cases correlations (called “pairwise-complete”) are r12 = 1, r13 = 1, and
r23 = −1. Clearly these are inconsistent, because if r12 = 1 and r13 = 1, then r23 should also be 1.

(b) I wrote a simple R function to do the computation, and then applied it to each pair of variables:
> myCor <- function (x, y){
+ mean.x <- mean(x, na.rm=TRUE)
+ mean.y <- mean(y, na.rm=TRUE)
+ sd.x <- sd(x, na.rm=TRUE)
+ sd.y <- sd(y, na.rm=TRUE)
+ n. complete <- sum( complete .cases(x, y))
+ cov.xy <- sum ((x - mean.x)*(y - mean.y), na.rm=TRUE)/(n. complete - 1)
+ cov.xy/(sd.x*sd.y)
+ }

> with(Data , myCor(x1 , x2))
[1] 0.7071068

> with(Data , myCor(x1 , x3))
[1] 0.7071068

> with(Data , myCor(x2 , x3))
[1] -1.5

This approach produces not only inconsistent correlations but also obvious nonsense, with r23 < −1!

(c)* The available-case correlation matrix has a negative eigenvalue:
> eigen(cor(Data , use=" pairwise . complete .obs"))$ values
[1] 2 2 -1

Exercise 20.3*

This is really a small project more than an exercise!

Functions for Sampling

Copyright © 2021 by John Fox. 102 All rights reserved.



I’ll start by writing R functions to draw simulated data and then create missing data as
MCAR, MAR, and MNAR. Both here and elsewhere in this exercise, I’m unconcerned with
writing efficient R code because the small simulation study runs quickly. Instead the code
is meant to be transparent. This is a very slightly edited version of the code I used when I
originally wrote the chapter on missing data.
library(MASS) # for mvnorm(), to draw multivariate-normal samples

mu <- c(10, 20)
Sigma <- matrix(c(9, 8, 8, 16), 2, 2)

mcar <- function(n, mu, Sigma, f){
nmiss <- round(f*n)
X <- mvrnorm(n, mu=mu, Sigma=Sigma)
imiss <- sample(n, nmiss, replace=FALSE)
X[imiss, 2] <- NA
X

}

mar <- function(n, mu, Sigma, a=-2/3, b=-2){
X <- mvrnorm(n, mu=mu, Sigma=Sigma)
pmiss <- 1/(1 + exp(-(a + b*(X[,1] - mu[1])/sqrt(Sigma[1,1]))))
imiss <- pmiss > runif(n)
X[imiss, 2] <- NA
X

}

mnar <- function(n, mu, Sigma, a=-2/3, b=-2){
X <- mvrnorm(n, mu=mu, Sigma=Sigma)
pmiss <- 1/(1 + exp(-(a + b*(X[,2] - mu[2])/sqrt(Sigma[2,2]))))
imiss <- pmiss > runif(n)
X[imiss, 2] <- NA
X

}

Functions to Estimate the Parameters
I’ll next write functions to obtain estimates by complete-case analysis, mean imputation,
regression imputation and multiple imputation, the last using the mi package, and to run
the simulation for each of these cases. Each function returns the simulation results as a list.
completeCaseAnalysis <- function(reps, n, mu, Sigma, fn=mcar, ...){

beta12 <- Sigma[1,2]/Sigma[2,2]
beta21 <- Sigma[1,2]/Sigma[1,1]
ci.mu1 <- rep(FALSE, reps)
ci.mu2 <- rep(FALSE, reps)
ci.beta12 <- rep(FALSE, reps)
ci.beta21 <- rep(FALSE, reps)

Copyright © 2021 by John Fox. 103 All rights reserved.



ci.mu1.width <- rep(0, reps)
ci.mu2.width <- rep(0, reps)
ci.beta12.width <- rep(0, reps)
ci.beta21.width <- rep(0, reps)
xbar1 <- rep(0, reps)
xbar2 <- rep(0, reps)
b12 <- rep(0, reps)
b21 <- rep(0, reps)
ngood <- rep(0, reps)
for (rep in 1:reps){

X <- na.omit(fn(n=n, mu=mu, Sigma=Sigma, ...))
mod <- lm(X[,1] ~ X[,2])
b <- coef(mod)[2]
ci <- confint(mod)[2,]
b12[rep] <- b
ci.beta12[rep] <- (ci[1] < beta12) && (beta12 < ci[2])
ci.beta12.width[rep] <- ci[2] - ci[1]
mod <- lm(X[,2] ~ X[,1])
b <- coef(mod)[2]
ci <- confint(mod)[2,]
b21[rep] <- b
ci.beta21[rep] <- (ci[1] < beta21) && (beta21 < ci[2])
ci.beta21.width[rep] <- ci[2] - ci[1]
xbar1[rep] <- mean(X[,1])
xbar2[rep] <- mean(X[,2])
ci <- t.test(X[,2])$conf.int
ci.mu2[rep] <- (ci[1] < mu[2]) && (mu[2] < ci[2])
ci.mu2.width[rep] <- ci[2] - ci[1]
ci <- t.test(X[,1])$conf.int
ci.mu1[rep] <- (ci[1] < mu[1]) && (mu[1] < ci[2])
ci.mu1.width[rep] <- ci[2] - ci[1]
ngood[rep] <- nrow(X)

}
list(reps=reps, n=n, mu=mu, Sigma=Sigma, fn=fn, beta12=beta12, beta21=beta21,

ci.mu1=sum(ci.mu1)/reps,
ci.mu2=sum(ci.mu2)/reps,
ci.beta12=sum(ci.beta12)/reps,
ci.beta21=sum(ci.beta21)/reps,
ci.mu1.width=mean(ci.mu1.width),
ci.mu2.width=mean(ci.mu2.width),
ci.beta12.width=mean(ci.beta12.width),
ci.beta21.width=mean(ci.beta21.width),
xbar1=mean(xbar1), xbar2=mean(xbar2), b12=mean(b12), b21=mean(b21),
rmse.xbar1=sqrt(mean((xbar1 - mu[1])ˆ2)),
rmse.xbar2=sqrt(mean((xbar2 - mu[2])ˆ2)),
rmse.beta12=sqrt(mean((b12 - beta12)ˆ2)),

Copyright © 2021 by John Fox. 104 All rights reserved.



rmse.beta21=sqrt(mean((b21 - beta21)ˆ2)),
f=mean(ngood)/n)

}

meanImputation <- function(reps, n, mu, Sigma, fn=mcar, ...){
beta12 <- Sigma[1,2]/Sigma[2,2]
beta21 <- Sigma[1,2]/Sigma[1,1]
ci.mu1 <- rep(FALSE, reps)
ci.mu2 <- rep(FALSE, reps)
ci.beta12 <- rep(FALSE, reps)
ci.beta21 <- rep(FALSE, reps)
ci.mu1.width <- rep(0, reps)
ci.mu2.width <- rep(0, reps)
ci.beta12.width <- rep(0, reps)
ci.beta21.width <- rep(0, reps)
xbar1 <- rep(0, reps)
xbar2 <- rep(0, reps)
b12 <- rep(0, reps)
b21 <- rep(0, reps)
ngood <- rep(0, reps)
for (rep in 1:reps){

X <- fn(n=n, mu=mu, Sigma=Sigma, ...)
X[is.na(X[,2]), 2] <- mean(X[,2], na.rm=TRUE)
mod <- lm(X[,1] ~ X[,2])
b <- coef(mod)[2]
ci <- confint(mod)[2,]
b12[rep] <- b
ci.beta12[rep] <- (ci[1] < beta12) && (beta12 < ci[2])
ci.beta12.width[rep] <- ci[2] - ci[1]
mod <- lm(X[,2] ~ X[,1])
b <- coef(mod)[2]
ci <- confint(mod)[2,]
b21[rep] <- b
ci.beta21[rep] <- (ci[1] < beta21) && (beta21 < ci[2])
ci.beta21.width[rep] <- ci[2] - ci[1]
xbar1[rep] <- mean(X[,1])
xbar2[rep] <- mean(X[,2])
ci <- t.test(X[,1])$conf.int
ci.mu1[rep] <- (ci[1] < mu[1]) && (mu[1] < ci[2])
ci.mu1.width[rep] <- ci[2] - ci[1]
ci <- t.test(X[,2])$conf.int
ci.mu2[rep] <- (ci[1] < mu[2]) && (mu[2] < ci[2])
ci.mu2.width[rep] <- ci[2] - ci[1]
ngood[rep] <- nrow(X)

}
list(reps=reps, n=n, mu=mu, Sigma=Sigma, fn=fn, beta12=beta12, beta21=beta21,

Copyright © 2021 by John Fox. 105 All rights reserved.



ci.mu1=sum(ci.mu1)/reps,
ci.mu2=sum(ci.mu2)/reps,
ci.beta12=sum(ci.beta12)/reps,
ci.beta21=sum(ci.beta21)/reps,
ci.mu1.width=mean(ci.mu1.width),
ci.mu2.width=mean(ci.mu2.width),
ci.beta12.width=mean(ci.beta12.width),
ci.beta21.width=mean(ci.beta21.width),
xbar1=mean(xbar1), xbar2=mean(xbar2), b12=mean(b12), b21=mean(b21),
rmse.xbar1=sqrt(mean((xbar1 - mu[1])ˆ2)),
rmse.xbar2=sqrt(mean((xbar2 - mu[2])ˆ2)),
rmse.beta12=sqrt(mean((b12 - beta12)ˆ2)),
rmse.beta21=sqrt(mean((b21 - beta21)ˆ2)),
f=mean(ngood)/n)

}

regressionImputation <- function(reps, n, mu, Sigma, fn=mcar, ...){
beta12 <- Sigma[1,2]/Sigma[2,2]
beta21 <- Sigma[1,2]/Sigma[1,1]
ci.mu1 <- rep(FALSE, reps)
ci.mu2 <- rep(FALSE, reps)
ci.beta12 <- rep(FALSE, reps)
ci.beta21 <- rep(FALSE, reps)
ci.mu1.width <- rep(0, reps)
ci.mu2.width <- rep(0, reps)
ci.beta12.width <- rep(0, reps)
ci.beta21.width <- rep(0, reps)
xbar1 <- rep(0, reps)
xbar2 <- rep(0, reps)
b12 <- rep(0, reps)
b21 <- rep(0, reps)
ngood <- rep(0, reps)
for (rep in 1:reps){

X <- fn(n=n, mu=mu, Sigma=Sigma, ...)
x1 <- X[,1]
x2 <- X[,2]
mod <- lm(x2 ~ x1)
yhat <- predict(mod, data.frame(x1=x1[is.na(x2)]))
X[is.na(X[,2]), 2] <- yhat
mod <- lm(X[,1] ~ X[,2])
b <- coef(mod)[2]
ci <- confint(mod)[2,]
b12[rep] <- b
ci.beta12[rep] <- (ci[1] < beta12) && (beta12 < ci[2])
ci.beta12.width[rep] <- ci[2] - ci[1]
mod <- lm(X[,2] ~ X[,1])

Copyright © 2021 by John Fox. 106 All rights reserved.



b <- coef(mod)[2]
ci <- confint(mod)[2,]
b21[rep] <- b
ci.beta21[rep] <- (ci[1] < beta21) && (beta21 < ci[2])
ci.beta21.width[rep] <- ci[2] - ci[1]
xbar1[rep] <- mean(X[,1])
ci <- t.test(X[,1])$conf.int
ci.mu1[rep] <- (ci[1] < mu[1]) && (mu[1] < ci[2])
ci.mu1.width[rep] <- ci[2] - ci[1]
xbar2[rep] <- mean(X[,2])
ci <- t.test(X[,2])$conf.int
ci.mu2[rep] <- (ci[1] < mu[2]) && (mu[2] < ci[2])
ci.mu2.width[rep] <- ci[2] - ci[1]
ngood[rep] <- nrow(X)

}
list(reps=reps, n=n, mu=mu, Sigma=Sigma, fn=fn, beta12=beta12, beta21=beta21,

ci.mu1=sum(ci.mu1)/reps,
ci.mu2=sum(ci.mu2)/reps,
ci.beta12=sum(ci.beta12)/reps,
ci.beta21=sum(ci.beta21)/reps,
ci.mu1.width=mean(ci.mu1.width),
ci.mu2.width=mean(ci.mu2.width),
ci.beta12.width=mean(ci.beta12.width),
ci.beta21.width=mean(ci.beta21.width),
xbar1=mean(xbar1), xbar2=mean(xbar2), b12=mean(b12), b21=mean(b21),
rmse.xbar1=sqrt(mean((xbar1 - mu[1])ˆ2)),
rmse.xbar2=sqrt(mean((xbar2 - mu[2])ˆ2)),
rmse.beta12=sqrt(mean((b12 - beta12)ˆ2)),
rmse.beta21=sqrt(mean((b21 - beta21)ˆ2)),
f=mean(ngood)/n)

}

multipleImputation <- function(imps=5, steps=10, seed=1234567, reps, n, mu,
Sigma, fn=mcar, ...){

require(norm)
rngseed(seed)
beta12 <- Sigma[1,2]/Sigma[2,2]
beta21 <- Sigma[1,2]/Sigma[1,1]
ci.mu1 <- rep(FALSE, reps)
ci.mu2 <- rep(FALSE, reps)
ci.beta12 <- rep(FALSE, reps)
ci.beta21 <- rep(FALSE, reps)
ci.mu1.width <- rep(0, reps)
ci.mu2.width <- rep(0, reps)
ci.beta12.width <- rep(0, reps)
ci.beta21.width <- rep(0, reps)

Copyright © 2021 by John Fox. 107 All rights reserved.



xbar1 <- rep(0, reps)
xbar2 <- rep(0, reps)
b12 <- rep(0, reps)
b21 <- rep(0, reps)
ngood <- rep(0, reps)
for (rep in 1:reps){

X <- fn(n=n, mu=mu, Sigma=Sigma, ...)
ngood[rep] <- nrow(na.omit(X))
colnames(X) <- c("x1", "x2")
X.summary <- prelim.norm(X)
X.em <- em.norm(X.summary, showits=FALSE)
imputed.data <- as.list(1:imps)
for (imp in 1:imps){

X.da <- da.norm(X.summary, X.em, steps=steps)
imputed.data[[imp]] <- imp.norm(X.summary, X.da, X)

}
results <- lapply(imputed.data,

function(data) {
mod <- lm(x1 ~ x2,

data=as.data.frame(data))
res <- list()
res$coef <- coef(mod)
res$se <- sqrt(diag(vcov(mod)))
res

}
)
results <- mi.inference(lapply(results, function(x) x$coef),

lapply(results, function(x) x$se))
b12[rep] <- results$est[2]
ci.beta12[rep] <- (results$lower[2] < beta12) && (beta12 < results$upper[2])
ci.beta12.width[rep] <- results$upper[2] - results$lower[2]
results <- lapply(imputed.data,

function(data) {
mod <- lm(x2 ~ x1,

data=as.data.frame(data))
res <- list()
res$coef <- coef(mod)
res$se <- sqrt(diag(vcov(mod)))
res

}
)
results <- mi.inference(lapply(results, function(x) x$coef),

lapply(results, function(x) x$se))
b21[rep] <- results$est[2]
ci.beta21[rep] <- (results$lower[2] < beta21) && (beta21 < results$upper[2])
ci.beta21.width[rep] <- results$upper[2] - results$lower[2]

Copyright © 2021 by John Fox. 108 All rights reserved.



results <- lapply(imputed.data,
function(data) {

mod <- lm(x1 ~ 1,
data=as.data.frame(data))

res <- list()
res$coef <- coef(mod)
res$se <- sqrt(diag(vcov(mod)))
res

}
)
results <- mi.inference(lapply(results, function(x) x$coef),

lapply(results, function(x) x$se))
xbar1[rep] <- results$est[1]
ci.mu1[rep] <- (results$lower[1] < mu[1]) && (mu[1] < results$upper[1])
ci.mu1.width[rep] <- results$upper[1] - results$lower[1]
results <- lapply(imputed.data,

function(data) {
mod <- lm(x2 ~ 1,

data=as.data.frame(data))
res <- list()
res$coef <- coef(mod)
res$se <- sqrt(diag(vcov(mod)))
res

}
)
results <- mi.inference(lapply(results, function(x) x$coef),

lapply(results, function(x) x$se))
xbar2[rep] <- results$est[1]
ci.mu2[rep] <- (results$lower[1] < mu[2]) &&

(mu[2] < results$upper[1])
ci.mu2.width[rep] <- results$upper[1] - results$lower[1]

}
list(imps=imps, steps=steps, seed=seed,

reps=reps, n=n, mu=mu, Sigma=Sigma, fn=fn, beta12=beta12, beta21=beta21,
ci.mu1=sum(ci.mu1)/reps,
ci.mu2=sum(ci.mu2)/reps,
ci.beta12=sum(ci.beta12)/reps,
ci.beta21=sum(ci.beta21)/reps,
ci.mu1.width=mean(ci.mu1.width),
ci.mu2.width=mean(ci.mu2.width),
ci.beta12.width=mean(ci.beta12.width),
ci.beta21.width=mean(ci.beta21.width),
xbar1=mean(xbar1), xbar2=mean(xbar2), b12=mean(b12), b21=mean(b21),
rmse.xbar1=sqrt(mean((xbar1 - mu[1])ˆ2)),
rmse.xbar2=sqrt(mean((xbar2 - mu[2])ˆ2)),
rmse.beta12=sqrt(mean((b12 - beta12)ˆ2)),

Copyright © 2021 by John Fox. 109 All rights reserved.



rmse.beta21=sqrt(mean((b21 - beta21)ˆ2)),
f=mean(ngood)/n)

}

Running the Simulations
Next, I’ll run the simulations, setting the seed for R’s random-number generator for repli-
cability, and using the same seed for each case so that I obtain the same samples across
different methods. The mi package uses its own random-number generator, and I set the
seed for that as well to a common value. There are 12 sets of simulations, crossing the 3
kinds of missing data with the 4 methods:
# MCAR

set.seed(87610826)
cc.mcar <- completeCaseAnalysis(reps=1000, n=250, mu=mu, Sigma=Sigma,

fn=mcar, f=0.4)

set.seed(87610826)
ms.mcar <- meanImputation(reps=1000, n=250, mu=mu, Sigma=Sigma,

fn=mcar, f=0.4)

set.seed(87610826)
rs.mcar <- regressionImputation(reps=1000, n=250, mu=mu, Sigma=Sigma,

fn=mcar, f=0.4)

set.seed(87610826)
mi.mcar <- multipleImputation(imps=5, steps=20, seed=44996878, reps=1000, n=250,

mu=mu, Sigma=Sigma, fn=mcar, f=0.4)

Loading required package: norm

# MAR

set.seed(87610826)
cc.mar <- completeCaseAnalysis(reps=1000, n=250, mu=mu, Sigma=Sigma,

fn=mar)

set.seed(87610826)
ms.mar <- meanImputation(reps=1000, n=250, mu=mu, Sigma=Sigma,

fn=mar)

set.seed(87610826)
rs.mar <- regressionImputation(reps=1000, n=250, mu=mu, Sigma=Sigma,

fn=mar)

set.seed(87610826)
mi.mar <- multipleImputation(imps=5, steps=20, seed=44996878, reps=1000,

Copyright © 2021 by John Fox. 110 All rights reserved.



n=250, mu=mu, Sigma=Sigma, fn=mar)

# MNAR

set.seed(87610826)
cc.mnar <- completeCaseAnalysis(reps=1000, n=250, mu=mu, Sigma=Sigma,

fn=mnar)

set.seed(87610826)
ms.mnar <- meanImputation(reps=1000, n=250, mu=mu, Sigma=Sigma,

fn=mnar)

set.seed(87610826)
rs.mnar <- regressionImputation(reps=1000, n=250, mu=mu, Sigma=Sigma,

fn=mnar)

set.seed(87610826)
mi.mnar <- multipleImputation(imps=5, steps=20, seed=44996878, reps=1000,

n=250, mu=mu, Sigma=Sigma, fn=mnar)

Results of the Simulations
Finally, here are summaries of the results of these simulations, starting with MAR, which
is the case summarized in Table 20.2 in the text. It would have been neater to write an
R function to create the summary tables, but I decided that it would be quicker simply to
assemble the tables directly from the 12 lists returned by the simulation functions.
Data Missing At Random (MAR)
You’ll see that the results differ slightly from those in Table 20.2 because different random
numbers were sampled—I was unable to duplicate the results in the text exactly, even though
I saved the random-number generator seed that I used, probably because of changes to R
and perhaps the MASS package since 2007, when I originally ran the simulation.
Average parameter estimates (recall that the parameters are µ1 = 10, µ2 = 20, β12 = 0.5, β21 =
0.889):
mean.MAR <- matrix(0, 4, 4)
rownames(mean.MAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(mean.MAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")
mean.MAR["mu_1", "CC"] <- cc.mar$xbar1
mean.MAR["mu_2", "CC"] <- cc.mar$xbar2
mean.MAR["beta_12", "CC"] <- cc.mar$b12
mean.MAR["beta_21", "CC"] <- cc.mar$b21
mean.MAR["mu_1", "Mean Imp"] <- ms.mar$xbar1
mean.MAR["mu_2", "Mean Imp"] <- ms.mar$xbar2
mean.MAR["beta_12", "Mean Imp"] <- ms.mar$b12
mean.MAR["beta_21", "Mean Imp"] <- ms.mar$b21
mean.MAR["mu_1", "Regr Imp"] <- rs.mar$xbar1

Copyright © 2021 by John Fox. 111 All rights reserved.



mean.MAR["mu_2", "Regr Imp"] <- rs.mar$xbar2
mean.MAR["beta_12", "Regr Imp"] <- rs.mar$b12
mean.MAR["beta_21", "Regr Imp"] <- rs.mar$b21
mean.MAR["mu_1", "Mult Imp"] <- mi.mar$xbar1
mean.MAR["mu_2", "Mult Imp"] <- mi.mar$xbar2
mean.MAR["beta_12", "Mult Imp"] <- mi.mar$b12
mean.MAR["beta_21", "Mult Imp"] <- mi.mar$b21
round(mean.MAR, 3)

CC Mean Imp Regr Imp Mult Imp
mu_1 11.453 9.995 9.995 9.995
mu_2 21.297 21.297 19.998 20.000
beta_12 0.391 0.391 0.642 0.496
beta_21 0.891 0.356 0.891 0.890

Root-mean-square error of the estimates:
RMSE.MAR <- matrix(0, 4, 4)
rownames(RMSE.MAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(RMSE.MAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")
RMSE.MAR["mu_1", "CC"] <- cc.mar$rmse.xbar1
RMSE.MAR["mu_2", "CC"] <- cc.mar$rmse.xbar2
RMSE.MAR["beta_12", "CC"] <- cc.mar$rmse.beta12
RMSE.MAR["beta_21", "CC"] <- cc.mar$rmse.beta21
RMSE.MAR["mu_1", "Mean Imp"] <- ms.mar$rmse.xbar1
RMSE.MAR["mu_2", "Mean Imp"] <- ms.mar$rmse.xbar2
RMSE.MAR["beta_12", "Mean Imp"] <- ms.mar$rmse.beta12
RMSE.MAR["beta_21", "Mean Imp"] <- ms.mar$rmse.beta21
RMSE.MAR["mu_1", "Regr Imp"] <- rs.mar$rmse.xbar1
RMSE.MAR["mu_2", "Regr Imp"] <- rs.mar$rmse.xbar2
RMSE.MAR["beta_12", "Regr Imp"] <- rs.mar$rmse.beta12
RMSE.MAR["beta_21", "Regr Imp"] <- rs.mar$rmse.beta21
RMSE.MAR["mu_1", "Mult Imp"] <- mi.mar$rmse.xbar1
RMSE.MAR["mu_2", "Mult Imp"] <- mi.mar$rmse.xbar2
RMSE.MAR["beta_12", "Mult Imp"] <- mi.mar$rmse.beta12
RMSE.MAR["beta_21", "Mult Imp"] <- mi.mar$rmse.beta21
round(RMSE.MAR, 3)

CC Mean Imp Regr Imp Mult Imp
mu_1 1.467 0.196 0.196 0.196
mu_2 1.332 1.332 0.328 0.340
beta_12 0.118 0.118 0.149 0.043
beta_21 0.101 0.536 0.101 0.107

Confidence-interval coverage (nominally 95%):
coverage.MAR <- matrix(0, 4, 4)
rownames(coverage.MAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(coverage.MAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")

Copyright © 2021 by John Fox. 112 All rights reserved.



coverage.MAR["mu_1", "CC"] <- cc.mar$ci.mu1
coverage.MAR["mu_2", "CC"] <- cc.mar$ci.mu2
coverage.MAR["beta_12", "CC"] <- cc.mar$ci.beta12
coverage.MAR["beta_21", "CC"] <- cc.mar$ci.beta21
coverage.MAR["mu_1", "Mean Imp"] <- ms.mar$ci.mu1
coverage.MAR["mu_2", "Mean Imp"] <- ms.mar$ci.mu2
coverage.MAR["beta_12", "Mean Imp"] <- ms.mar$ci.beta12
coverage.MAR["beta_21", "Mean Imp"] <- ms.mar$ci.beta21
coverage.MAR["mu_1", "Regr Imp"] <- rs.mar$ci.mu1
coverage.MAR["mu_2", "Regr Imp"] <- rs.mar$ci.mu2
coverage.MAR["beta_12", "Regr Imp"] <- rs.mar$ci.beta12
coverage.MAR["beta_21", "Regr Imp"] <- rs.mar$ci.beta21
coverage.MAR["mu_1", "Mult Imp"] <- mi.mar$ci.mu1
coverage.MAR["mu_2", "Mult Imp"] <- mi.mar$ci.mu2
coverage.MAR["beta_12", "Mult Imp"] <- mi.mar$ci.beta12
coverage.MAR["beta_21", "Mult Imp"] <- mi.mar$ci.beta21
round(coverage.MAR, 3)

CC Mean Imp Regr Imp Mult Imp
mu_1 0.000 0.950 0.950 0.950
mu_2 0.007 0.001 0.811 0.944
beta_12 0.304 0.612 0.053 0.949
beta_21 0.947 0.000 0.654 0.948

Average confidence-interval width:
width.MAR <- matrix(0, 4, 4)
rownames(width.MAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(width.MAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")
width.MAR["mu_1", "CC"] <- cc.mar$ci.mu1.width
width.MAR["mu_2", "CC"] <- cc.mar$ci.mu2.width
width.MAR["beta_12", "CC"] <- cc.mar$ci.beta12.width
width.MAR["beta_21", "CC"] <- cc.mar$ci.beta21.width
width.MAR["mu_1", "Mean Imp"] <- ms.mar$ci.mu1.width
width.MAR["mu_2", "Mean Imp"] <- ms.mar$ci.mu2.width
width.MAR["beta_12", "Mean Imp"] <- ms.mar$ci.beta12.width
width.MAR["beta_21", "Mean Imp"] <- ms.mar$ci.beta21.width
width.MAR["mu_1", "Regr Imp"] <- rs.mar$ci.mu1.width
width.MAR["mu_2", "Regr Imp"] <- rs.mar$ci.mu2.width
width.MAR["beta_12", "Regr Imp"] <- rs.mar$ci.beta12.width
width.MAR["beta_21", "Regr Imp"] <- rs.mar$ci.beta21.width
width.MAR["mu_1", "Mult Imp"] <- mi.mar$ci.mu1.width
width.MAR["mu_2", "Mult Imp"] <- mi.mar$ci.mu2.width
width.MAR["beta_12", "Mult Imp"] <- mi.mar$ci.beta12.width
width.MAR["beta_21", "Mult Imp"] <- mi.mar$ci.beta21.width
round(width.MAR, 3)

CC Mean Imp Regr Imp Mult Imp

Copyright © 2021 by John Fox. 113 All rights reserved.



mu_1 0.789 0.746 0.746 0.742
mu_2 1.191 0.710 0.879 1.425
beta_12 0.174 0.244 0.140 0.176
beta_21 0.396 0.221 0.192 0.466

Data Missing Completely At Random (MAR)
Average parameter estimates:
mean.MCAR <- matrix(0, 4, 4)
rownames(mean.MCAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(mean.MCAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")
mean.MCAR["mu_1", "CC"] <- cc.mcar$xbar1
mean.MCAR["mu_2", "CC"] <- cc.mcar$xbar2
mean.MCAR["beta_12", "CC"] <- cc.mcar$b12
mean.MCAR["beta_21", "CC"] <- cc.mcar$b21
mean.MCAR["mu_1", "Mean Imp"] <- ms.mcar$xbar1
mean.MCAR["mu_2", "Mean Imp"] <- ms.mcar$xbar2
mean.MCAR["beta_12", "Mean Imp"] <- ms.mcar$b12
mean.MCAR["beta_21", "Mean Imp"] <- ms.mcar$b21
mean.MCAR["mu_1", "Regr Imp"] <- rs.mcar$xbar1
mean.MCAR["mu_2", "Regr Imp"] <- rs.mcar$xbar2
mean.MCAR["beta_12", "Regr Imp"] <- rs.mcar$b12
mean.MCAR["beta_21", "Regr Imp"] <- rs.mcar$b21
mean.MCAR["mu_1", "Mult Imp"] <- mi.mcar$xbar1
mean.MCAR["mu_2", "Mult Imp"] <- mi.mcar$xbar2
mean.MCAR["beta_12", "Mult Imp"] <- mi.mcar$b12
mean.MCAR["beta_21", "Mult Imp"] <- mi.mcar$b21
round(mean.MCAR, 3)

CC Mean Imp Regr Imp Mult Imp
mu_1 9.999 9.998 9.998 9.998
mu_2 19.993 19.993 19.992 19.995
beta_12 0.500 0.500 0.645 0.500
beta_21 0.890 0.531 0.890 0.890

Root-mean-square error of the estimates:
RMSE.MCAR <- matrix(0, 4, 4)
rownames(RMSE.MCAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(RMSE.MCAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")
RMSE.MCAR["mu_1", "CC"] <- cc.mcar$rmse.xbar1
RMSE.MCAR["mu_2", "CC"] <- cc.mcar$rmse.xbar2
RMSE.MCAR["beta_12", "CC"] <- cc.mcar$rmse.beta12
RMSE.MCAR["beta_21", "CC"] <- cc.mcar$rmse.beta21
RMSE.MCAR["mu_1", "Mean Imp"] <- ms.mcar$rmse.xbar1
RMSE.MCAR["mu_2", "Mean Imp"] <- ms.mcar$rmse.xbar2
RMSE.MCAR["beta_12", "Mean Imp"] <- ms.mcar$rmse.beta12
RMSE.MCAR["beta_21", "Mean Imp"] <- ms.mcar$rmse.beta21
RMSE.MCAR["mu_1", "Regr Imp"] <- rs.mcar$rmse.xbar1

Copyright © 2021 by John Fox. 114 All rights reserved.



RMSE.MCAR["mu_2", "Regr Imp"] <- rs.mcar$rmse.xbar2
RMSE.MCAR["beta_12", "Regr Imp"] <- rs.mcar$rmse.beta12
RMSE.MCAR["beta_21", "Regr Imp"] <- rs.mcar$rmse.beta21
RMSE.MCAR["mu_1", "Mult Imp"] <- mi.mcar$rmse.xbar1
RMSE.MCAR["mu_2", "Mult Imp"] <- mi.mcar$rmse.xbar2
RMSE.MCAR["beta_12", "Mult Imp"] <- mi.mcar$rmse.beta12
RMSE.MCAR["beta_21", "Mult Imp"] <- mi.mcar$rmse.beta21
round(RMSE.MCAR, 3)

CC Mean Imp Regr Imp Mult Imp
mu_1 0.248 0.191 0.191 0.191
mu_2 0.330 0.330 0.295 0.302
beta_12 0.046 0.046 0.150 0.042
beta_21 0.080 0.364 0.080 0.083

Confidence-interval coverage:
coverage.MCAR <- matrix(0, 4, 4)
rownames(coverage.MCAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(coverage.MCAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")
coverage.MCAR["mu_1", "CC"] <- cc.mcar$ci.mu1
coverage.MCAR["mu_2", "CC"] <- cc.mcar$ci.mu2
coverage.MCAR["beta_12", "CC"] <- cc.mcar$ci.beta12
coverage.MCAR["beta_21", "CC"] <- cc.mcar$ci.beta21
coverage.MCAR["mu_1", "Mean Imp"] <- ms.mcar$ci.mu1
coverage.MCAR["mu_2", "Mean Imp"] <- ms.mcar$ci.mu2
coverage.MCAR["beta_12", "Mean Imp"] <- ms.mcar$ci.beta12
coverage.MCAR["beta_21", "Mean Imp"] <- ms.mcar$ci.beta21
coverage.MCAR["mu_1", "Regr Imp"] <- rs.mcar$ci.mu1
coverage.MCAR["mu_2", "Regr Imp"] <- rs.mcar$ci.mu2
coverage.MCAR["beta_12", "Regr Imp"] <- rs.mcar$ci.beta12
coverage.MCAR["beta_21", "Regr Imp"] <- rs.mcar$ci.beta21
coverage.MCAR["mu_1", "Mult Imp"] <- mi.mcar$ci.mu1
coverage.MCAR["mu_2", "Mult Imp"] <- mi.mcar$ci.mu2
coverage.MCAR["beta_12", "Mult Imp"] <- mi.mcar$ci.beta12
coverage.MCAR["beta_21", "Mult Imp"] <- mi.mcar$ci.beta21
round(coverage.MCAR, 3)

CC Mean Imp Regr Imp Mult Imp
mu_1 0.947 0.948 0.948 0.946
mu_2 0.956 0.739 0.852 0.947
beta_12 0.952 0.974 0.042 0.948
beta_21 0.958 0.000 0.779 0.955

Confidence-interval width:
width.MCAR <- matrix(0, 4, 4)
rownames(width.MCAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(width.MCAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")

Copyright © 2021 by John Fox. 115 All rights reserved.



width.MCAR["mu_1", "CC"] <- cc.mcar$ci.mu1.width
width.MCAR["mu_2", "CC"] <- cc.mcar$ci.mu2.width
width.MCAR["beta_12", "CC"] <- cc.mcar$ci.beta12.width
width.MCAR["beta_21", "CC"] <- cc.mcar$ci.beta21.width
width.MCAR["mu_1", "Mean Imp"] <- ms.mcar$ci.mu1.width
width.MCAR["mu_2", "Mean Imp"] <- ms.mcar$ci.mu2.width
width.MCAR["beta_12", "Mean Imp"] <- ms.mcar$ci.beta12.width
width.MCAR["beta_21", "Mean Imp"] <- ms.mcar$ci.beta21.width
width.MCAR["mu_1", "Regr Imp"] <- rs.mcar$ci.mu1.width
width.MCAR["mu_2", "Regr Imp"] <- rs.mcar$ci.mu2.width
width.MCAR["beta_12", "Regr Imp"] <- rs.mcar$ci.beta12.width
width.MCAR["beta_21", "Regr Imp"] <- rs.mcar$ci.beta21.width
width.MCAR["mu_1", "Mult Imp"] <- mi.mcar$ci.mu1.width
width.MCAR["mu_2", "Mult Imp"] <- mi.mcar$ci.mu2.width
width.MCAR["beta_12", "Mult Imp"] <- mi.mcar$ci.beta12.width
width.MCAR["beta_21", "Mult Imp"] <- mi.mcar$ci.beta21.width
round(width.MCAR, 3)

CC Mean Imp Regr Imp Mult Imp
mu_1 0.966 0.748 0.748 0.744
mu_2 1.289 0.770 0.879 1.230
beta_12 0.181 0.209 0.139 0.171
beta_21 0.323 0.221 0.192 0.355

Data Missing Not at Random
Average parameter estimates
mean.MNAR <- matrix(0, 4, 4)
rownames(mean.MNAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(mean.MNAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")
mean.MNAR["mu_1", "CC"] <- cc.mnar$xbar1
mean.MNAR["mu_2", "CC"] <- cc.mnar$xbar2
mean.MNAR["beta_12", "CC"] <- cc.mnar$b12
mean.MNAR["beta_21", "CC"] <- cc.mnar$b21
mean.MNAR["mu_1", "Mean Imp"] <- ms.mnar$xbar1
mean.MNAR["mu_2", "Mean Imp"] <- ms.mnar$xbar2
mean.MNAR["beta_12", "Mean Imp"] <- ms.mnar$b12
mean.MNAR["beta_21", "Mean Imp"] <- ms.mnar$b21
mean.MNAR["mu_1", "Regr Imp"] <- rs.mnar$xbar1
mean.MNAR["mu_2", "Regr Imp"] <- rs.mnar$xbar2
mean.MNAR["beta_12", "Regr Imp"] <- rs.mnar$b12
mean.MNAR["beta_21", "Regr Imp"] <- rs.mnar$b21
mean.MNAR["mu_1", "Mult Imp"] <- mi.mnar$xbar1
mean.MNAR["mu_2", "Mult Imp"] <- mi.mnar$xbar2
mean.MNAR["beta_12", "Mult Imp"] <- mi.mnar$b12
mean.MNAR["beta_21", "Mult Imp"] <- mi.mnar$b21
round(mean.MNAR, 3)

Copyright © 2021 by John Fox. 116 All rights reserved.



CC Mean Imp Regr Imp Mult Imp
mu_1 10.960 9.995 9.995 9.995
mu_2 21.945 21.945 21.270 21.265
beta_12 0.501 0.501 0.735 0.551
beta_21 0.699 0.357 0.699 0.699

Root-mean-square error of the estimates:
RMSE.MNAR <- matrix(0, 4, 4)
rownames(RMSE.MNAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(RMSE.MNAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")
RMSE.MNAR["mu_1", "CC"] <- cc.mnar$rmse.xbar1
RMSE.MNAR["mu_2", "CC"] <- cc.mnar$rmse.xbar2
RMSE.MNAR["beta_12", "CC"] <- cc.mnar$rmse.beta12
RMSE.MNAR["beta_21", "CC"] <- cc.mnar$rmse.beta21
RMSE.MNAR["mu_1", "Mean Imp"] <- ms.mnar$rmse.xbar1
RMSE.MNAR["mu_2", "Mean Imp"] <- ms.mnar$rmse.xbar2
RMSE.MNAR["beta_12", "Mean Imp"] <- ms.mnar$rmse.beta12
RMSE.MNAR["beta_21", "Mean Imp"] <- ms.mnar$rmse.beta21
RMSE.MNAR["mu_1", "Regr Imp"] <- rs.mnar$rmse.xbar1
RMSE.MNAR["mu_2", "Regr Imp"] <- rs.mnar$rmse.xbar2
RMSE.MNAR["beta_12", "Regr Imp"] <- rs.mnar$rmse.beta12
RMSE.MNAR["beta_21", "Regr Imp"] <- rs.mnar$rmse.beta21
RMSE.MNAR["mu_1", "Mult Imp"] <- mi.mnar$rmse.xbar1
RMSE.MNAR["mu_2", "Mult Imp"] <- mi.mnar$rmse.xbar2
RMSE.MNAR["beta_12", "Mult Imp"] <- mi.mnar$rmse.beta12
RMSE.MNAR["beta_21", "Mult Imp"] <- mi.mnar$rmse.beta21
round(RMSE.MNAR, 3)

CC Mean Imp Regr Imp Mult Imp
mu_1 0.989 0.196 0.196 0.196
mu_2 1.964 1.964 1.297 1.294
beta_12 0.055 0.055 0.241 0.073
beta_21 0.206 0.535 0.206 0.207

Confidence-interval converage:
coverage.MNAR <- matrix(0, 4, 4)
rownames(coverage.MNAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(coverage.MNAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")
coverage.MNAR["mu_1", "CC"] <- cc.mnar$ci.mu1
coverage.MNAR["mu_2", "CC"] <- cc.mnar$ci.mu2
coverage.MNAR["beta_12", "CC"] <- cc.mnar$ci.beta12
coverage.MNAR["beta_21", "CC"] <- cc.mnar$ci.beta21
coverage.MNAR["mu_1", "Mean Imp"] <- ms.mnar$ci.mu1
coverage.MNAR["mu_2", "Mean Imp"] <- ms.mnar$ci.mu2
coverage.MNAR["beta_12", "Mean Imp"] <- ms.mnar$ci.beta12
coverage.MNAR["beta_21", "Mean Imp"] <- ms.mnar$ci.beta21
coverage.MNAR["mu_1", "Regr Imp"] <- rs.mnar$ci.mu1

Copyright © 2021 by John Fox. 117 All rights reserved.



coverage.MNAR["mu_2", "Regr Imp"] <- rs.mnar$ci.mu2
coverage.MNAR["beta_12", "Regr Imp"] <- rs.mnar$ci.beta12
coverage.MNAR["beta_21", "Regr Imp"] <- rs.mnar$ci.beta21
coverage.MNAR["mu_1", "Mult Imp"] <- mi.mnar$ci.mu1
coverage.MNAR["mu_2", "Mult Imp"] <- mi.mnar$ci.mu2
coverage.MNAR["beta_12", "Mult Imp"] <- mi.mnar$ci.beta12
coverage.MNAR["beta_21", "Mult Imp"] <- mi.mnar$ci.beta21
round(coverage.MNAR, 3)

CC Mean Imp Regr Imp Mult Imp
mu_1 0.013 0.950 0.950 0.950
mu_2 0.000 0.000 0.000 0.013
beta_12 0.949 0.984 0.007 0.836
beta_21 0.329 0.000 0.105 0.423

Confidence-interval width:
width.MNAR <- matrix(0, 4, 4)
rownames(width.MNAR) <- c("mu_1", "mu_2", "beta_12", "beta_21")
colnames(width.MNAR) <- c("CC", "Mean Imp", "Regr Imp", "Mult Imp")
width.MNAR["mu_1", "CC"] <- cc.mnar$ci.mu1.width
width.MNAR["mu_2", "CC"] <- cc.mnar$ci.mu2.width
width.MNAR["beta_12", "CC"] <- cc.mnar$ci.beta12.width
width.MNAR["beta_21", "CC"] <- cc.mnar$ci.beta21.width
width.MNAR["mu_1", "Mean Imp"] <- ms.mnar$ci.mu1.width
width.MNAR["mu_2", "Mean Imp"] <- ms.mnar$ci.mu2.width
width.MNAR["beta_12", "Mean Imp"] <- ms.mnar$ci.beta12.width
width.MNAR["beta_21", "Mean Imp"] <- ms.mnar$ci.beta21.width
width.MNAR["mu_1", "Regr Imp"] <- rs.mnar$ci.mu1.width
width.MNAR["mu_2", "Regr Imp"] <- rs.mnar$ci.mu2.width
width.MNAR["beta_12", "Regr Imp"] <- rs.mnar$ci.beta12.width
width.MNAR["beta_21", "Regr Imp"] <- rs.mnar$ci.beta21.width
width.MNAR["mu_1", "Mult Imp"] <- mi.mnar$ci.mu1.width
width.MNAR["mu_2", "Mult Imp"] <- mi.mnar$ci.mu2.width
width.MNAR["beta_12", "Mult Imp"] <- mi.mnar$ci.beta12.width
width.MNAR["beta_21", "Mult Imp"] <- mi.mnar$ci.beta21.width
round(width.MNAR, 3)

CC Mean Imp Regr Imp Mult Imp
mu_1 0.892 0.746 0.746 0.742
mu_2 1.053 0.628 0.727 1.122
beta_12 0.222 0.270 0.180 0.216
beta_21 0.310 0.191 0.170 0.344

The conclusions to be drawn from the MCAR and MNAR data are consistent with the
discussion in the text.
Exercise 20.5* To be completed.

Exercise 20.7

Copyright © 2021 by John Fox. 118 All rights reserved.



Here is a table of RE(β̃j) as a function of g and γj ,

γj
g 0.05 0.1 0.2 0.5 0.9 0.99
1 0.952 0.909 0.833 0.667 0.526 0.503
2 0.976 0.952 0.909 0.800 0.690 0.669
3 0.984 0.968 0.938 0.857 0.769 0.752
5 0.990 0.980 0.962 0.909 0.847 0.835
10 0.995 0.990 0.980 0.952 0.917 0.910
20 0.998 0.995 0.990 0.976 0.957 0.953

and a table of
√

RE(β̃j),

γj
g 0.05 0.1 0.2 0.5 0.9 0.99
1 0.976 0.953 0.913 0.816 0.725 0.709
2 0.988 0.976 0.953 0.894 0.830 0.818
3 0.992 0.984 0.968 0.926 0.877 0.867
5 0.995 0.990 0.981 0.953 0.921 0.914
10 0.998 0.995 0.990 0.976 0.958 0.954
20 0.999 0.998 0.995 0.988 0.978 0.976

We do very well with g as small as 5, even for very high rates of missing information.

Exercise 20.9

(a) Here are the mean and variance as a function of the left-truncation point a:

a
E(Y ) 0.055 0.288 0.798 1.525 2.373
V (Y ) 0.886 0.630 0.363 0.199 0.114

(b)* We can take advantage of the symmetry of a normal distribution about its mean. Thus

E(Y ) = E(ξ|ξ ≤ a) = µ− σm(−za)
V (Y ) = V (ξ|ξ ≤ a) = σ2[1− d(−za)]

As the threshold a moves to the left, so does the mean, and the variance decreases (as the
distribution is increasingly squeezed).

Exercise 20.11*

(a) We can take advantage of the symmetry of the normal distribution to adapt the formulas for the
left-censored case. First, define

Φ′(z) ≡ 1− Φ(z)

m′(z) ≡ φ(z)
Φ′(−z)

d′(z) ≡ m′(z)[m′(z) + z]

Then if Y is derived from ξ ∼ N(µ, σ2) censored to the right at b, and zb ≡ (b− µ)/σ,

E(Y ) = bΦ′(zb) + [µ− σm′(zb)][1− Φ′(zb)]
V (Y ) = σ2[1− Φ′(zb)]

{
1− d′(zb) + [zb +m′(zb)]2Φ′(zb)

}

Copyright © 2021 by John Fox. 119 All rights reserved.



(b) Now suppose that Y is derived from ξ ∼ N(µ, σ2) censored to the left at a and to the right at b.
Then, combining the results in the text for left censoring with those in part (a),

E(Y ) = aΦ(za) + bΦ′(zb) + µ[1− Φ(za)− Φ′(zb)]
+ σm(za)[1− Φ(za)]− σm′(zb)[1− Φ′(zb)]

V (Y ) To be completed.

Exercise 20.13*

This is similar to the previous problem in that it follows from the application of the general equation
for V (Y ) in Equations 2.17, but now letting Yi play the role of Y . Then

V (Yi) = σ2
ξi [1− ρ

2
ξiζid(z−ψi)]

= σ2
ε

{
1− ρ2

εδm(−ψi)[m(−ψi)− (−ψi)]
}

= σ2
ε [1− ρ2

εδλi(λi + ψi)]

The transition to the second line of the equation is justified by noting that εi is the error associated
with the latent response ξi and hence has the same, constant, conditional variance, σ2

ε , as ξi; δi is the
error associated with the selection response ζi; and ρεδ is the constant correlation between the two
errors and hence between the corresponding latent responses.

Exercise 20.15*

Recall that White’s coefficient-variance estimator takes the form

Ṽ (b) = (X′X)−1X′Σ̂X(X′X)−1

where Σ̂ ≡ diag{E2
i }. In the current context, we can replace E2

i with the estimated conditional variance
of Yi, that is σ̂2

ε [1− ρ̂2
εδλ̂i(λ̂i + ψ̂i)].

To make this work, we need estimates of the various quantities. We already have λ̂i and ψ̂i from the
first-step probit regression. We can simplify the notation a bit by writing di ≡ d(−ψ̂i) = λ̂i(λ̂i + ψ̂i)
and ρ̂ ≡ ρ̂εδ. Then V̂ (Yi) = σ̂2

ε(1− ρ̂2di).

The variance of the least-squares residuals ν̂i from the second-step regression estimates the average of
these case-wise conditional variances. That is,

∑
ν̂2
i /n = σ̂2

ε(1− ρ̂2d̄) where d̄ is the mean of the di. The
regression coefficient bλ for λ̂i in the second step estimates ρσε, and so we can take σ̂2

ε =
∑
ν̂2
i /n+ d̄b2λ,

and then ρ̂ = bλ/σ̂ε.

Copyright © 2021 by John Fox. 120 All rights reserved.



Exercises for Chapter 21
Exercise 21.1*

Here is a simple approach to the problem that doesn’t require the hint: Bootstrap sampling is just
independent random sampling from the discrete population constituted by the original sample. Thus,
the results in this exercise follow directly from the sampling distribution of the mean of an independent
sample, as typically discussed in a basic statistics course.

In particular, each value Yi′ , i′ = 1, . . . , n, is selected with equal probability pi′ = 1/n for each draw
Y ∗ib, i = 1, . . . , n of the bootstrap sample. (It’s true that some values Yi′ might be duplicated, say ki′
times, but then the probability of drawing that duplicated value is ki′ 1

n , and so we can just as well
treat the duplicated values individually, as I have done.) Each of the n draws therefore has expectation
E∗(Y ∗ib) =

∑n
i′=1

1
nYi′ = Ȳ , and thus E∗(Ȳ ∗) = 1

n

∑n
i=1E

∗(Y ∗ib) = 1
n × n× Ȳ = Ȳ , as required.

Similarly, from the sampling distribution for the mean of an independent sample, the variance of the
bootstrap mean is the variance of the bootstrapped values divided by n. The variance of each bootstrap
draw is V ∗(Yib) =

∑n
i=1

1
n (Yi − Ȳ )2. Then V ∗(Ȳ ∗) = 1

nV
∗(Yib) = 1

n2

∑n
i=1(Yi − Ȳ )2 = 1

nS
2
n where S2

n

is the sample variance of Y using n rather than the more typical n− 1 in the denominator; I denote the
latter simply S2. The standard deviation of the bootstrap means is the square root of their bootstrap
variance. There is therefore a small error in the question: The bootstrap standard error of Ȳ ∗ is
SE∗(Ȳ ∗) =

√
n−1S
n , not S√

n−1 , as given in the question.

Exercise 21.3

The Boot() function in the car package for R performs a more complex kind of fixed-X resampling than
the version described in the text, and so I wrote simple R functions for random and fixed-X resampling
to use for this problem:
> bootRandom <- function (model , B =1000){
+ y <- model. response ( model. frame( model ))
+ X <- model. matrix ( model )
+ n <- nrow(X)
+ coef <- matrix (0, B, ncol(X))
+ colnames (coef) <- colnames (X)
+ residuals <- fitted <- matrix (0, B, n)
+ colnames ( residuals ) <- paste0 ("e", 1:n)
+ colnames ( fitted ) <- paste0 ("yhat", 1:n)
+ for (b in 1:B){
+ cases <- sample (n, n, replace =TRUE)
+ m <- lm(y[cases] ~ X[cases , ] - 1)
+ coef[b, ] <- coef(m)
+ residuals [b, ] <- residuals (m)
+ fitted [b, ] <- fitted (m)
+ }
+ list(coef=coef , fitted =fitted , residuals = residuals )
+ }

> bootFixed <- function (model , B =1000){
+ yhat <- fitted (model )
+ e <- residuals (model )
+ X <- model. matrix ( model)
+ n <- nrow(X)
+ coef <- matrix (0, B, ncol(X))
+ colnames (coef) <- colnames (X)
+ residuals <- fitted <- matrix (0, B, n)
+ colnames ( residuals ) <- paste0 ("e", 1:n)
+ colnames ( fitted ) <- paste0 ("yhat", 1:n)
+ for (b in 1:B){
+ cases <- sample (n, n, replace =TRUE)

Copyright © 2021 by John Fox. 121 All rights reserved.



+ y <- yhat + e[cases]
+ m <- lm(y ~ X - 1)
+ coef[b, ] <- coef(m)
+ residuals [b, ] <- residuals (m)
+ fitted [b, ] <- fitted (m)
+ }
+ list(coef=coef , fitted =fitted , residuals = residuals )
+ }

(a) I drew the two histograms and density estimates on the same scale to facilitate comparison:
> library ("car") # for Davis data and adaptiveKernel ()
Loading required package : carData

> # remove NAs
> Females <- na.omit(Davis[Davis $sex == "F", c("repwt", " weight ")])
> m.davis <- lm(repwt ~ weight , data= Females )
> summary (m.davis)

Call:
lm( formula = repwt ~ weight , data = Females )

Residuals :
Min 1Q Median 3Q Max

-29.2230 -3.0746 -0.1325 3.3386 15.5783

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 41.32276 2.72086 15.187 < 2e -16 ***
weight 0.26446 0.04558 5.802 7.9e -08 ***
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.85 on 99 degrees of freedom
Multiple R- squared : 0.2537 , Adjusted R- squared : 0.2462
F- statistic : 33.66 on 1 and 99 DF , p-value: 7.9e -08

> set.seed (2308345) # for reproducibility
> boot. random <- bootRandom (m.davis)
> boot.fixed <- bootFixed (m.davis)

> # bootstrap SEs:

> apply(boot. random $coef , 2, sd)
( Intercept ) weight

20.0951786 0.3535695

> apply(boot.fixed $coef , 2, sd)
( Intercept ) weight

2.65407014 0.04438204

> par(mfrow=c(1, 2))

> hist(boot. random $coef[, 2], freq=FALSE , xlab=" weight slope",
+ main="(a) Random -X Resampling ", cex.main =1,
+ breaks =seq (0, 1.1, by =0.05) , ylim=c(0, 10))
> box ()
> lines( adaptiveKernel (boot. random $coef[, 2]))

Copyright © 2021 by John Fox. 122 All rights reserved.



> hist(boot.fixed $coef[, 2], freq=FALSE , xlab=" weight slope",
+ main="(b) Fixed -X Resampling ", cex.main =1,
+ breaks =seq (0, 1.1, by =0.05) , ylim=c(0, 10))
> box ()
> lines( adaptiveKernel (boot.fixed $coef[, 2]))

(a) Random−X Resampling

weight slope

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

(b) Fixed−X Resampling

weight slope

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

In random-X resampling, the results differ drastically depending on whether the outlier appears in a
bootstrap sample (possibly more than once) or not, producing a bimodal bootstrap distribution of the
slope. In fixed-X resampling, the large residual for the outlier moves around the data and its effect on
the results isn’t apparent. As well, the bootstrap standard error of the slope is much larger in fixed-X
resampling than in random-X resampling.
(b) > set.seed (54375921) # for reproducibility
> x <- 1:100
> y <- 5 + 2*x + rnorm (100 , 0, sd=x)
> Data <- data. frame (x, y)
> m <- lm(y ~ x, data=Data)
> summary (m)

Call:
lm( formula = y ~ x, data = Data)

Residuals :
Min 1Q Median 3Q Max

-139.341 -24.386 -1.884 16.641 156.620

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 9.5300 10.4175 0.915 0.363
x 2.0414 0.1791 11.398 <2e -16 ***
---
Signif . codes : 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 51.7 on 98 degrees of freedom
Multiple R- squared : 0.57 , Adjusted R- squared : 0.5656
F- statistic : 129.9 on 1 and 98 DF , p-value: < 2.2e -16

> boot. random <- bootRandom (m)
> boot.fixed <- bootFixed (m)

Copyright © 2021 by John Fox. 123 All rights reserved.



> # bootstrap SEs:

> apply(boot. random $coef , 2, sd)
( Intercept ) x

6.1739242 0.1776632

> apply(boot.fixed $coef , 2, sd)
( Intercept ) x

10.596893 0.183641

> par(mfrow=c(1, 2))

# bootstrap distributions of the slope:

> hist(boot. random $coef[, 2], freq=FALSE , xlab=" weight slope",
+ main="(a) Random -X Resampling ", cex.main =1,
+ xlim=c(1.4 , 2.8) , ylim=c(0, 2.5))
> box ()
> lines( adaptiveKernel (boot. random $coef[, 2]))

> hist(boot.fixed $coef[, 2], freq=FALSE , xlab=" weight slope",
+ main="(b) Fixed -X Resampling ", cex.main =1,
+ xlim=c(1.4 , 2.8) , ylim=c(0, 2.5))
> box ()
> lines( adaptiveKernel (boot.fixed $coef[, 2]))

> par(mfrow=c(4, 2))

> residuals . random <- boot. random $ residuals
> fitted . random <- boot. random $ fitted
> residuals .fixed <- boot.fixed $ residuals
> fitted .fixed <- boot.fixed$ fitted

> # residuals vs. fitted values for the first 4 bootstrap replications :
> for (i in 1:4){
+ plot( fitted . random [i, ], residuals . random [i, ],
+ xlab=" fitted values ", ylab=" residuals ",
+ main="Random -X Resampling ")
+ plot( fitted .fixed[i, ], residuals .fixed[i, ],
+ xlab=" fitted values ", ylab=" residuals ",
+ main="Fixed -X Resampling ")
+ }

Copyright © 2021 by John Fox. 124 All rights reserved.



(a) Random−X Resampling

weight slope

D
en

si
ty

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(b) Fixed−X Resampling

weight slope

D
en

si
ty

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0 50 100 150 200

−
15

0
−

50
0

50
10

0
15

0

Random−X Resampling

fitted values

re
si

du
al

s

0 50 100 150 200

−
15

0
−

50
0

50
10

0

Fixed−X Resampling

fitted values

re
si

du
al

s

50 100 150 200

−
10

0
0

50
10

0
15

0

Random−X Resampling

fitted values

re
si

du
al

s

50 100 150

−
10

0
0

50
10

0
15

0

Fixed−X Resampling

fitted values

re
si

du
al

s

50 100 150 200

−
15

0
−

50
0

50
10

0
15

0

Random−X Resampling

fitted values

re
si

du
al

s

50 100 150 200

−
15

0
−

50
0

50
10

0
15

0

Fixed−X Resampling

fitted values

re
si

du
al

s

50 100 150 200

−
10

0
0

50
10

0
15

0

Random−X Resampling

fitted values

re
si

du
al

s

0 50 100 150 200

−
15

0
−

50
0

50
10

0
15

0

Fixed−X Resampling

fitted values

re
si

du
al

s

In this case, the bootstrap distributions and standard errors are quite similar for random and fixed-X
resampling, but the plots of residuals against fitted values (which I drew for the first four bootstrap
samples produced by each method) are quite different, with the plots for the random-X bootstrap
replications capturing the pattern of nonconstant error variance while the plots for the fixed-X bootstrap

Copyright © 2021 by John Fox. 125 All rights reserved.



replications miss the pattern. The difference arises because fixed-X resampling spreads the residuals
randomly among the observations, while fixed-X resampling keeps each X-value with the corresponding
Y -value.

(c) It’s apparent from these examples that fixed-X resampling depends more on the correctness of the
structure of the model and can fail to detect problems when the model is defective in some manner.
That’s particularly apparent in the part (a), where fixed-X resampling fails to reflect the impact of the
outlier.

Exercise 21.5*

I’ll use the rlm() (robust linear model) function from the MASS package for R to obtain the Huber
M-estimator, the linearHypothesis() function from the car package to compute test statistics for
the hypothesis, and the Boot() function, also from the car package, to perform bootstrap resampling.
Loading the car package gives us direct access to the Duncan data set.

As you’ll see, linearHypothesis() computes an F -test rather than a χ2 test; although I could force
it to compute a χ2 test, it’s probably not worth the extra programming effort to do so, particularly
because we’d get the same bootstrapped p-value for both test statistics (which are monotone functions
of each other), and the traditional F -test (as opposed to the bootstrap test) is likely better than the χ2

test in a small sample .

Here are the estimated model and test for the original data set:
> library ("car") # for data , linearHypothesis (), and Boot ()
Loading required package : carData
> library ("MASS") # for rlm ()
> m <- rlm( prestige ~ income + education , data= Duncan )
> summary (m)

Call: rlm( formula = prestige ~ income + education , data = Duncan )
Residuals :

Min 1Q Median 3Q Max
-3.120 -6.889 1.291 4.592 38.603

Coefficients :
Value Std. Error t value

( Intercept ) -7.1107 3.8813 -1.8320
income .7014 .1087 6.4516
education .4854 .0893 5.4380

Residual standard error: 9.892 on 42 degrees of freedom
> linearHypothesis (m, c(" income ", " education "))
Linear hypothesis test

Hypothesis :
income = 0
education = 0

Model 1: restricted model
Model 2: prestige ~ income + education

Res.Df Df F Pr(>F)
1 44
2 42 2 128.43 < 2.2e -16 ***
---
Signif . codes : 0'***' .001 '**' .01 '*' .05 '.' .1 ' ' 1

The p-value for the test is effectively 0 (i.e., p < 2.2× 10−16).

Copyright © 2021 by John Fox. 126 All rights reserved.



Next, I’ll write a small function to extract the test statistic from the object returned by
linearHypothesis(), to be used with the Boot() function. Recall that for the bootstrap test, the
hypothesis should test whether the estimated coefficients are equal to their values in the original data
set. Applied to the model fit to the original data set, we should therefore get a test statistic of F = 0,
within rounding error (in our case F = 1.15× 10−29 ≈ 0):
> (b <- coef(m))
( Intercept ) income education

-7.1107028 .7014493 .4854390
> T <- function ( model ){
+ linearHypothesis (model , c( paste(" income =", b[" income "]),
+ paste(" education =", b[" education "])))$F[2]
+ }
> T(m)
[1] 1.148245e -29

I’ll base the bootstrap test on 2,000 replications:
> set.seed (6858046) # for reproducibility
> boots <- Boot(m, f=T, R =2000)
Loading required namespace : boot
There were 37 warnings (use warnings () to see them)
> warnings ()[1]
Warning message :
In rlm. default (x, y, weights , method = method , wt. method = wt.method , ... :

'rlm ' failed to converge in 20 steps
> sum(boots$t > 128.43)
[1] 0

I’ve hit a small snag: the Huber M-estimator failed to converge in a few of the bootstrap samples.
Again, I could program around this problem, for example, trapping the convergence failures, but it’s
probably not worth the effort because the result is unambiguous: The obtained bootstrap F -statistics
exceed the original test statistic in none of the bootstrap samples, and so the boostrapped p-value is 0
(or more pedantically, p < 1/2000). Here’s a density estimate (with rug plot) of the 2000 bootstrapped
F s:
> densityPlot (boots$t, from =0, xlab="T")

Copyright © 2021 by John Fox. 127 All rights reserved.



0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T

D
en

si
ty

It’s clear from the graph that none of the bootstrapped test statistics gets near the observed F = 128.

Exercise 21.7*

We treat the X-values as fixed to preserve the time-series structure of the data. If we simply resampled
cases, we’d lose the sequence of the observations.

It’s straightforward to implement the time-series bootstrapping procedure described in this exercise in R.
I’ll first fit the model with AR(1) errors by ML using the gls() (generalized least squares) function in
the nlme package. The data reside conveniently in the Hartnagel data frame in the carData package:
> library (" carData ")
> library ("nlme")
> m.ar1 <- gls( fconvict ~ tfr + partic + degrees + mconvict ,
+ data=Hartnagel , correlation = corAR1 (), method ="ML")
> summary (m.ar1)
Generalized least squares fit by maximum likelihood

Model: fconvict ~ tfr + partic + degrees + mconvict
Data: Hartnagel

AIC BIC logLik
312.4234 323.8865 -149.2117

Correlation Structure : AR (1)
Formula : ~1
Parameter estimate (s):

Phi
.8015954

Coefficients :
Value Std.Error t-value p-value

( Intercept ) 152.20280 81.40131 1.8697833 .0704
tfr -.03169 .01532 -2.0686521 .0465
partic .05400 .12694 .4254100 .6733
degrees .01047 .30897 .0338871 .9732
mconvict .02666 .03896 .6842862 .4986

Copyright © 2021 by John Fox. 128 All rights reserved.



Correlation :
(Intr) tfr partic degres

tfr -.822
partic -.623 .293
degrees -.247 .347 -.177
mconvict -.529 .155 .125 -.004

Standardized residuals :
Min Q1 Med Q3 Max

-1.1156221 -.7326178 -.2830969 .3014207 2.7527218

Residual standard error: 2.25772
Degrees of freedom : 38 total; 33 residual

I’ll then write a function to generate the estimates of the errors νi (i.e., the Vis in the question) and
another function to draw a single bootstrap sample of the Yis:
> nuAR1 <- function (e, rho ){
+ n <- length (e)
+ nu <- numeric (n)
+ nu [1] <- e[1]
+ for (i in 2:n){
+ nu[i] <- e[i] - rho*e[i - 1]
+ }
+ nu
+ }
>
> bootstrapSampleAR1 <- function (yhat , nu , rho ){
+ n <- length (nu)
+ nus <- sample (nu , n, replace =TRUE)
+ es <- numeric (n)
+ es [1] <- nus [1]
+ for (i in 2:n){
+ es[i] <- rho*es[i - 1] + nus[i]
+ }
+ yhat + es
+ }

Next, I’ll generate B = 1000 bootstrap samples of the Y s, redo the regression for each bootstrap sample,
and save the resulting regression coefficients:
> B <- 1000
> b.coefs <- matrix (0, B, length (coef(m.ar1 )))
> nu <- nuAR1(e= residuals (m.ar1), rho =.8015954)
> yhat <- fitted (m.ar1)
> set.seed (4308467) # for reproducibility
> for (b in 1:B){
+ y.b <- bootstrapSampleAR1 (yhat , nu , .8015954)
+ b.coefs[b, ] <- coef( update (m.ar1 , y.b ~ .))
+ }

Finally, the standard deviations of the bootstrapped regression coefficients are the bootstrap standard
errors:
> apply(b.coefs , 2, sd)
[1] 8.78248934 .01511508 .12953714 .31772396 .03887480

In this case, the bootstrapped standard errors are very similar to the conventional asymptotic standard
errors for the ML estimates of the regression coefficients:

Copyright © 2021 by John Fox. 129 All rights reserved.



> sqrt(diag(vcov(m.ar1 )))
( Intercept ) tfr partic degrees mconvict
81.40130852 .01532105 .12694397 .30896543 .03895725

This procedure is easily adapted to an AR(2) model for the errors. First, I’ll use gls() to reproduce
the results reported in the text (Equation 16.19 on page 493):
> m.ar2 <- gls( fconvict ~ tfr + partic + degrees + mconvict , data=Hartnagel ,
+ correlation = corARMA (p=2), method ="ML")
> summary (m.ar2)
Generalized least squares fit by maximum likelihood

Model: fconvict ~ tfr + partic + degrees + mconvict
Data: Hartnagel

AIC BIC logLik
305.4145 318.5152 -144.7073

Correlation Structure : ARMA (2 ,0)
Formula : ~1
Parameter estimate (s):

Phi1 Phi2
1.0683473 -.5507269

Coefficients :
Value Std.Error t-value p-value

( Intercept ) 83.34028 59.47084 1.401364 .1704
tfr -.03999 .00928 -4.308632 .0001
partic .28761 .11201 2.567653 .0150
degrees -.20984 .20658 -1.015757 .3171
mconvict .07569 .03501 2.161899 .0380

Correlation :
(Intr) tfr partic degres

tfr -.773
partic -.570 .176
degrees .093 .033 -.476
mconvict -.689 .365 .047 .082

Standardized residuals :
Min Q1 Med Q3 Max

-2.4991516 -.3716988 -.1494540 .3372409 2.9094711

Residual standard error: 17.70228
Degrees of freedom : 38 total; 33 residual

As before, I’ll write functions to estimate the νis and to generate a bootstrap sample of the Yis, and
then use these to generate B = 1000 bootstrap samples and the corresponding regression coefficients:
> nuAR2 <- function (e, phi1 , phi2 ){
+ n <- length (e)
+ nu <- numeric (n)
+ nu [1:2] <- e[1:2]
+ for (i in 3:n){
+ nu[i] <- e[i] - phi1*e[i - 1] - phi2*e[i - 2]
+ }
+ nu
+ }
>
> bootstrapSampleAR2 <- function (yhat , nu , phi1 , phi2 ){
+ n <- length (nu)

Copyright © 2021 by John Fox. 130 All rights reserved.



+ nus <- sample (nu , n, replace =TRUE)
+ es <- numeric (n)
+ es [1:2] <- nus [1:2]
+ for (i in 3:n){
+ es[i] <- phi1*es[i - 1] + phi2*es[i - 2] + nus[i]
+ }
+ yhat + es
+ }
>
> B <- 1000
> b.coefs <- matrix (0, B, length (coef(m.ar2 )))
> nu <- nuAR2(e= residuals (m.ar2), phi1 =1.0683473 , phi2 = -.5507269)
> yhat <- fitted (m.ar2)
> set.seed (8438573) # for reproducibility
> for (b in 1:B){
+ y.b <- bootstrapSampleAR2 (yhat , nu , phi1 =1.0683473 ,
+ phi2 = -.5507269)
+ b.coefs[b, ] <- coef( update (m.ar2 , y.b ~ .))
+ }
>
> apply(b.coefs , 2, sd)
[1] 57.387591723 .009163869 .113360143 .202188110 .033093102
> sqrt(diag(vcov(m.ar2 )))

( Intercept ) tfr partic degrees mconvict
59.470835291 .009280671 .112013488 .206580991 .035009033

The bootstrap standard errors are once again similar to the conventional coefficient standard errors.

Copyright © 2021 by John Fox. 131 All rights reserved.



Exercises for Chapter 22
Exercise 22.1

(a) I used R to generate and analyze the data:
> set.seed (137472394) # for reproducibility
> Data <- as.data. frame( matrix ( rnorm (500*101) , 500, 101))
> mod .1 <- lm(V1 ~ ., data=Data)
> summary (mod .1)

Call:
lm( formula = V1 ~ ., data = Data)

Residuals :
Min 1Q Median 3Q Max

-2.21776 -0.61594 0.00312 0.52684 2.52022

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 0.0138874 0.0484708 0.287 0.7746
V2 -0.0396278 0.0515072 -0.769 0.4421
V3 0.0872461 0.0490917 1.777 0.0763 .
V4 0.0652411 0.0478351 1.364 0.1734
V5 0.0326468 0.0515921 0.633 0.5272
V6 -0.0593439 0.0490481 -1.210 0.2270
V7 0.0267640 0.0476731 0.561 0.5748
V8 -0.1100395 0.0499235 -2.204 0.0281 *
V9 0.0475599 0.0498315 0.954 0.3405
V10 -0.0459965 0.0481835 -0.955 0.3404
V11 -0.0054681 0.0482714 -0.113 0.9099
V12 -0.0760712 0.0453468 -1.678 0.0942 .
V13 -0.0156193 0.0472535 -0.331 0.7412
V14 0.0159363 0.0488267 0.326 0.7443
V15 -0.0091271 0.0502167 -0.182 0.8559
V16 -0.0382370 0.0474418 -0.806 0.4207
V17 0.0690735 0.0471310 1.466 0.1436
V18 -0.0261989 0.0500812 -0.523 0.6012
V19 -0.0933564 0.0497180 -1.878 0.0611 .
V20 -0.0023633 0.0514322 -0.046 0.9634
V21 -0.0147989 0.0487386 -0.304 0.7616
V22 -0.0332344 0.0455643 -0.729 0.4662
V23 -0.0152634 0.0478530 -0.319 0.7499
V24 -0.0625352 0.0484450 -1.291 0.1975
V25 0.0234108 0.0519230 0.451 0.6523
V26 -0.0958155 0.0469544 -2.041 0.0419 *
V27 -0.0609216 0.0477549 -1.276 0.2028
V28 0.0282179 0.0482901 0.584 0.5593
V29 -0.0262295 0.0465917 -0.563 0.5738
V30 -0.0059334 0.0487864 -0.122 0.9033
V31 0.0652734 0.0502204 1.300 0.1944
V32 0.0506495 0.0485431 1.043 0.2974
V33 -0.0358884 0.0487992 -0.735 0.4625
V34 -0.0073339 0.0515772 -0.142 0.8870
V35 -0.0163436 0.0491378 -0.333 0.7396
V36 0.0364931 0.0500981 0.728 0.4668
V37 -0.0595755 0.0486485 -1.225 0.2214
V38 -0.0635972 0.0479555 -1.326 0.1855
V39 -0.0257037 0.0528781 -0.486 0.6272
V40 -0.0373742 0.0468585 -0.798 0.4256

Copyright © 2021 by John Fox. 132 All rights reserved.



V41 0.0167876 0.0497118 0.338 0.7358
V42 -0.0030788 0.0515829 -0.060 0.9524
V43 -0.0573513 0.0494979 -1.159 0.2473
V44 -0.0174783 0.0494978 -0.353 0.7242
V45 0.0304971 0.0487878 0.625 0.5323
V46 -0.0420323 0.0496042 -0.847 0.3973
V47 0.0082395 0.0482725 0.171 0.8646
V48 -0.0768555 0.0466368 -1.648 0.1001
V49 -0.0136467 0.0457084 -0.299 0.7654
V50 -0.0199305 0.0480899 -0.414 0.6788
V51 0.0247131 0.0477458 0.518 0.6050
V52 -0.0373444 0.0462600 -0.807 0.4200
V53 -0.0119503 0.0495916 -0.241 0.8097
V54 -0.0738473 0.0478947 -1.542 0.1239
V55 -0.0615077 0.0469668 -1.310 0.1911
V56 -0.0161867 0.0448362 -0.361 0.7183
V57 -0.0040034 0.0493313 -0.081 0.9354
V58 -0.0144516 0.0502976 -0.287 0.7740
V59 -0.0186445 0.0498004 -0.374 0.7083
V60 0.0468476 0.0484895 0.966 0.3346
V61 0.0284392 0.0502595 0.566 0.5718
V62 -0.0830301 0.0489702 -1.696 0.0908 .
V63 0.0594251 0.0485027 1.225 0.2212
V64 -0.0102879 0.0486041 -0.212 0.8325
V65 0.0388134 0.0487871 0.796 0.4268
V66 0.0279078 0.0488903 0.571 0.5684
V67 -0.0512207 0.0506632 -1.011 0.3126
V68 0.0587382 0.0468937 1.253 0.2111
V69 0.0051568 0.0508331 0.101 0.9192
V70 0.0413269 0.0506641 0.816 0.4152
V71 -0.0566214 0.0485982 -1.165 0.2447
V72 0.0021439 0.0505229 0.042 0.9662
V73 -0.0206714 0.0510546 -0.405 0.6858
V74 -0.0421982 0.0490304 -0.861 0.3899
V75 -0.0153635 0.0491446 -0.313 0.7547
V76 0.0227442 0.0464805 0.489 0.6249
V77 -0.0275705 0.0464025 -0.594 0.5527
V78 -0.0082844 0.0492279 -0.168 0.8664
V79 0.0467985 0.0489607 0.956 0.3397
V80 -0.0737237 0.0497805 -1.481 0.1394
V81 0.0252105 0.0480291 0.525 0.5999
V82 -0.0606381 0.0531426 -1.141 0.2545
V83 0.0618214 0.0504182 1.226 0.2209
V84 -0.0461935 0.0509764 -0.906 0.3654
V85 0.0004865 0.0456825 0.011 0.9915
V86 -0.0274232 0.0501451 -0.547 0.5848
V87 -0.0152845 0.0478293 -0.320 0.7495
V88 0.0072633 0.0495654 0.147 0.8836
V89 0.0515427 0.0499349 1.032 0.3026
V90 -0.0787349 0.0502769 -1.566 0.1181
V91 -0.0665580 0.0478359 -1.391 0.1649
V92 0.0802798 0.0483334 1.661 0.0975 .
V93 0.0071514 0.0468604 0.153 0.8788
V94 0.0744670 0.0470358 1.583 0.1142
V95 0.0570803 0.0489585 1.166 0.2444
V96 0.0059961 0.0467765 0.128 0.8981
V97 0.0544637 0.0488747 1.114 0.2658
V98 0.0365336 0.0509547 0.717 0.4738
V99 -0.0397640 0.0499706 -0.796 0.4267

Copyright © 2021 by John Fox. 133 All rights reserved.



V100 -0.0175037 0.0500740 -0.350 0.7269
V101 -0.0275651 0.0496512 -0.555 0.5791
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9818 on 399 degrees of freedom
Multiple R- squared : 0.1857 , Adjusted R- squared : -0.01835
F- statistic : 0.9101 on 100 and 399 DF , p-value: 0.7115

The omnibus F -test produces a p-value of .71, which is not “statistically significant.” Two of the
100 slope coefficients, for predictors 8 and 26, are “statistically significant” at the .05 level for a
two-sided test. This is more or less what I expected: The true values of the βjs are all 0, and
so the null hypotheses are all correct. I’d expect each null hypothesis to produce a Type-I error
(rejecting a true H0) 5 percent of the time. The omnibus test didn’t produce one of these unlucky
results. I’d expect about 5 of the 100 coefficients to be “statistically significant” by chance, and as
it turned out, I observed only 2 such Type-I errors.

(b) The three predictors with the largest t-values are 8, 26, and 19. Here’s the regression with just
these three predictors:
> mod .2 <- lm(V1 ~ V8 + V26 + V19 , data=Data)
> summary (mod .2)

Call:
lm( formula = V1 ~ V8 + V26 + V19 , data = Data)

Residuals :
Min 1Q Median 3Q Max

-2.3113 -0.6741 -0.0195 0.5894 3.4283

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 0.0003916 0.0431845 0.009 0.9928
V8 -0.0925030 0.0433772 -2.133 0.0335 *
V26 -0.0808518 0.0421630 -1.918 0.0557 .
V19 -0.0817653 0.0430856 -1.898 0.0583 .
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9645 on 496 degrees of freedom
Multiple R- squared : 0.02311 , Adjusted R- squared : 0.0172
F- statistic : 3.911 on 3 and 496 DF , p-value: 0.008853

In this regression, only predictor 8 is “statistically significant,” and the p-values are about the
same as in the initial regression, but now the omnibus F -test has a small p-value of .00885.

(c) I used the step() function in R for variable selection by backward elimination. I elided most of
the lengthy output, showing only the last few steps:
> step(mod .1, k=1000 , direction =" backward ")

. . .

Step: AIC =5949.05
V1 ~ V8 + V19 + V48 + V54 + V97

Df Sum of Sq RSS AIC
- V48 1 3.2209 454.78 4952.6
- V19 1 3.7169 455.27 4953.1
- V54 1 4.6031 456.16 4954.1

Copyright © 2021 by John Fox. 134 All rights reserved.



- V97 1 4.6357 456.19 4954.2
- V8 1 5.6474 457.21 4955.3
<none > 451.56 5949.0

Step: AIC =4952.6
V1 ~ V8 + V19 + V54 + V97

Df Sum of Sq RSS AIC
- V19 1 3.5457 458.32 3956.5
- V54 1 4.8318 459.61 3957.9
- V97 1 5.3093 460.09 3958.4
- V8 1 5.3841 460.16 3958.5
<none > 454.78 4952.6

Step: AIC =3956.48
V1 ~ V8 + V54 + V97

Df Sum of Sq RSS AIC
- V54 1 4.2131 462.54 2961.1
- V8 1 5.5074 463.83 2962.5
- V97 1 5.6111 463.94 2962.6
<none > 458.32 3956.5

Step: AIC =2961.06
V1 ~ V8 + V97

Df Sum of Sq RSS AIC
- V8 1 4.7994 467.34 1966.2
- V97 1 5.5337 468.07 1967.0
<none > 462.54 2961.1

Step: AIC =1966.22
V1 ~ V97

Df Sum of Sq RSS AIC
- V97 1 5.0246 472.36 971.57
<none > 467.34 1966.22

Step: AIC =971.57
V1 ~ 1

Call:
lm( formula = V1 ~ 1, data = Data)

Coefficients :
( Intercept )

0.003213

Note: Setting k=1000 forces step() to run to completion; as a consequence, the criterion labeled
“AIC” in the output isn’t the usual AIC. The “best” model with three predictors has variables 8,
54, and 97:
> mod .3 <- lm(V1 ~ V8 + V54 + V97 , data=Data)
> summary (mod .3)

Call:
lm( formula = V1 ~ V8 + V54 + V97 , data = Data)

Copyright © 2021 by John Fox. 135 All rights reserved.



Residuals :
Min 1Q Median 3Q Max

-2.27764 -0.67990 -0.04784 0.61895 3.08590

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.002034 0.043046 -0.047 0.9623
V8 -0.105993 0.043416 -2.441 0.0150 *
V54 -0.089611 0.041967 -2.135 0.0332 *
V97 0.105810 0.042939 2.464 0.0141 *
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9613 on 496 degrees of freedom
Multiple R- squared : 0.02972 , Adjusted R- squared : 0.02385
F- statistic : 5.064 on 3 and 496 DF , p-value: 0.001836

In this model, all three slope coefficients are “statistically significant,” as is the omnibus F -test.
The results seem more “promising” than those in part (a)

(d) This part of the exercise is a bit open-ended. I’ll perform stepwise regression by backwards
elimination, using the AIC as the criterion for model selection, which is the default in step(),
showing the final model:
> step(mod .1, direction =" backward ")

. . .

Step: AIC = -44.07
V1 ~ V3 + V4 + V6 + V8 + V9 + V12 + V17 + V19 + V24 + V26 + V37 +

V48 + V54 + V62 + V79 + V80 + V91 + V92 + V94 + V97

Df Sum of Sq RSS AIC
<none > 420.93 -44.067
- V80 1 1.7054 422.64 -44.045
- V79 1 1.7509 422.68 -43.991
- V37 1 1.7707 422.70 -43.968
- V92 1 1.7838 422.72 -43.952
- V12 1 1.8251 422.76 -43.904
- V4 1 1.8416 422.77 -43.884
- V91 1 1.8949 422.83 -43.821
- V6 1 1.9220 422.86 -43.789
- V24 1 2.0455 422.98 -43.643
- V17 1 2.1563 423.09 -43.512
- V9 1 2.4208 423.35 -43.200
- V3 1 2.8510 423.78 -42.692
- V26 1 2.8872 423.82 -42.649
- V97 1 3.2766 424.21 -42.190
- V94 1 3.3747 424.31 -42.074
- V62 1 3.5268 424.46 -41.895
- V19 1 3.5369 424.47 -41.883
- V48 1 3.8507 424.78 -41.514
- V54 1 5.2984 426.23 -39.813
- V8 1 5.7447 426.68 -39.289

Call:
lm( formula = V1 ~ V3 + V4 + V6 + V8 + V9 + V12 + V17 + V19 +

V24 + V26 + V37 + V48 + V54 + V62 + V79 + V80 + V91 + V92 +
V94 + V97 , data = Data)

Copyright © 2021 by John Fox. 136 All rights reserved.



> mod .4 <- lm(V1 ~ V3 + V4 + V6 + V8 + V9 + V12 + V17 + V19 +
+ V24 + V26 + V37 + V48 + V54 + V62 + V79 + V80 + V91 + V92 +
+ V94 + V97 , data = Data)
> summary (mod .4)

Call:
lm( formula = V1 ~ V3 + V4 + V6 + V8 + V9 + V12 + V17 + V19 +

V24 + V26 + V37 + V48 + V54 + V62 + V79 + V80 + V91 + V92 +
V94 + V97 , data = Data)

Residuals :
Min 1Q Median 3Q Max

-2.5332 -0.6464 -0.0126 0.5522 2.8187

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) 0.002817 0.042346 0.067 0.9470
V3 0.077306 0.042919 1.801 0.0723 .
V4 0.061354 0.042382 1.448 0.1484
V6 -0.063069 0.042646 -1.479 0.1398
V8 -0.109620 0.042874 -2.557 0.0109 *
V9 0.071904 0.043323 1.660 0.0976 .
V12 -0.057588 0.039961 -1.441 0.1502
V17 0.065668 0.041921 1.566 0.1179
V19 -0.084801 0.042270 -2.006 0.0454 *
V24 -0.064758 0.042446 -1.526 0.1278
V26 -0.075418 0.041608 -1.813 0.0705 .
V37 -0.060812 0.042840 -1.419 0.1564
V48 -0.084568 0.040399 -2.093 0.0368 *
V54 -0.102098 0.041580 -2.455 0.0144 *
V62 -0.084401 0.042131 -2.003 0.0457 *
V79 0.059836 0.042391 1.412 0.1587
V80 -0.059121 0.042440 -1.393 0.1642
V91 -0.062161 0.042331 -1.468 0.1426
V92 0.059266 0.041598 1.425 0.1549
V94 0.080883 0.041274 1.960 0.0506 .
V97 0.082363 0.042654 1.931 0.0541 .
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9374 on 479 degrees of freedom
Multiple R- squared : 0.1089 , Adjusted R- squared : 0.07167
F- statistic : 2.926 on 20 and 479 DF , p-value: 2.676e -05

Using the AIC nominates a model with 20 predictors, and fitting this model produces five
“statistically significant” slope coefficients and a very small p-value for the omnibus F -test. Because
all of the regression coefficients, including the intercept, are really 0, the true model generating
the data is just independent random draws from the standard-normal distribution, Yi ∼ N(0, 1).
Thus the “results” obtained in parts (b), (c), and (d) are illusions.

(e) Refitting the models in parts (b), (c), and (d) using new data:
> set.seed (34753274) # for reproducibility
> Data2 <- as.data.frame ( matrix ( rnorm (500*101) , 500, 101))

> mod .2v <- update (mod .2, data=Data2)
> summary (mod .2v)

Copyright © 2021 by John Fox. 137 All rights reserved.



Call:
lm( formula = V1 ~ V8 + V26 + V19 , data = Data2)

Residuals :
Min 1Q Median 3Q Max

-2.86661 -0.68360 0.04837 0.64533 2.42016

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.003801 0.044590 -0.085 0.932
V8 -0.030919 0.043813 -0.706 0.481
V26 -0.042188 0.042924 -0.983 0.326
V19 -0.037894 0.046519 -0.815 0.416

Residual standard error: 0.9955 on 496 degrees of freedom
Multiple R- squared : 0.004234 , Adjusted R- squared : -0.001789
F- statistic : 0.703 on 3 and 496 DF , p-value: 0.5506

> mod .3v <- update (mod .3, data=Data2)
> summary (mod .3v)

Call:
lm( formula = V1 ~ V8 + V54 + V97 , data = Data2)

Residuals :
Min 1Q Median 3Q Max

-2.96913 -0.66961 0.05356 0.68018 2.39876

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.01174 0.04444 -0.264 0.7918
V8 -0.02946 0.04358 -0.676 0.4994
V54 0.09449 0.04460 2.118 0.0346 *
V97 0.04113 0.04280 0.961 0.3371
---
Signif . codes : 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9917 on 496 degrees of freedom
Multiple R- squared : 0.01181 , Adjusted R- squared : 0.005833
F- statistic : 1.976 on 3 and 496 DF , p-value: 0.1167

> mod .4v <- update (mod .4, data=Data2)
> summary (mod .4v)

Call:
lm( formula = V1 ~ V3 + V4 + V6 + V8 + V9 + V12 + V17 + V19 +

V24 + V26 + V37 + V48 + V54 + V62 + V79 + V80 + V91 + V92 +
V94 + V97 , data = Data2)

Residuals :
Min 1Q Median 3Q Max

-2.8875 -0.6954 0.0474 0.6877 2.4615

Coefficients :
Estimate Std. Error t value Pr(>|t|)

( Intercept ) -0.008795 0.045543 -0.193 0.8469
V3 0.035369 0.044631 0.792 0.4285
V4 0.038398 0.044435 0.864 0.3879
V6 0.010029 0.042441 0.236 0.8133

Copyright © 2021 by John Fox. 138 All rights reserved.



V8 -0.036782 0.044270 -0.831 0.4065
V9 0.013851 0.042873 0.323 0.7468
V12 -0.001996 0.044429 -0.045 0.9642
V17 -0.022253 0.044146 -0.504 0.6144
V19 -0.034578 0.047310 -0.731 0.4652
V24 -0.011356 0.047433 -0.239 0.8109
V26 -0.044122 0.043529 -1.014 0.3113
V37 -0.047897 0.046271 -1.035 0.3011
V48 0.049033 0.046126 1.063 0.2883
V54 0.092212 0.045183 2.041 0.0418 *
V62 0.022604 0.042857 0.527 0.5981
V79 0.004610 0.045302 0.102 0.9190
V80 0.005371 0.045500 0.118 0.9061
V91 0.028117 0.044783 0.628 0.5304
V92 0.036477 0.044491 0.820 0.4127
V94 -0.082788 0.045622 -1.815 0.0702 .
V97 0.045992 0.043694 1.053 0.2931
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9986 on 479 degrees of freedom
Multiple R- squared : 0.03241 , Adjusted R- squared : -0.007993
F- statistic : 0.8022 on 20 and 479 DF , p-value: 0.712

None of the selected models produce “statistically significant” omnibus F -tests when applied to
the validation data, and in the three regressions, only two individual coefficients are “statistically
significant.” This exercise illustrates how easy it is to produce nonsensical results by model selection
without properly accounting for chance “findings.”

(f) I’ll leave repeating the exercise—which gives a concrete sense of how the detailed results change
randomly—to the reader.

Exercise 22.3

We can eliminate the additive constant 1 from R̃2 along with the multiplicative constant (n− 1)/TSS
without changing the order in which it ranks models. Removing the minus sign reverses the rank
order of models, producing the equivalent criterion RSS/(n− s), where small values are better, and so
the only difference in comparison to the GCV is the division by n− s rather than by (n− s)2(along
with omission of the constant factor n in the GCV). Because squaring n− s implies a greater relative
parsimony penalty for the number of parameters s, the GCV and R̃2 need not rank models identically.

Exercise 22.5

I began by reading the baseball-salary data from the website for the text and performing data-
management tasks to create the data set used for the example:
> library ("car") # for recode () and subsets ()
Loading required package : carData

> url <- paste0 (c("https:// socialsciences . mcmaster .ca", "jfox", "Books",
+ "Applied -Regression -3E", " datasets ", " BaseballHitters .txt"),
+ collapse ="/")
> Baseball <- read. table(url , header =TRUE)
> # data management :
> rownames ( Baseball ) <- with(Baseball ,
+ paste (firstName , lastName , sep="."))
> Baseball <- Baseball [, -(1:2)] # remove names
> # remove Pete Rose
> Baseball <- Baseball [- which( rownames ( Baseball )=="Pete.Rose"),]
> Baseball <- na.omit( Baseball ) # remove cases with missing data

Copyright © 2021 by John Fox. 139 All rights reserved.



> Baseball $ middle . infield <- recode ( Baseball $position ,
+ " c('2B', 'SS ', '2S') = 1; else =0 ", as. factor =FALSE)
> Baseball $ center .field <- recode ( Baseball $position ,
+ " 'CF ' = 1; else =0 ", as. factor =FALSE)
> Baseball $ catcher <- recode ( Baseball $position ,
+ " 'C' = 1; else =0 ", as. factor =FALSE)
> Baseball $dh <- recode ( Baseball $position ,
+ " 'DH ' = 1; else =0 ", as. factor =FALSE)
> Baseball <- Baseball [, -c(14:17 , 22:23)] # remove unused variables
> Baseball $ atbats .year <- Baseball $ careerAB / Baseball $ years
> Baseball $hits.year <- Baseball $ careerH / Baseball $ years
> Baseball $ homers .year <- Baseball $ careerHR / Baseball $ years
> Baseball $runs.year <- Baseball $ careerR / Baseball $ years
> Baseball $rbis.year <- Baseball $ careerRBI / Baseball $ years
> Baseball $walks.year <- Baseball $ careerW / Baseball $ years
> Baseball $ average <- Baseball $H86/ Baseball $AB86
> Baseball $ career . average <- Baseball $ careerH / Baseball $ careerAB
> Baseball $ onbase <- 100*( Baseball $H86 + Baseball $W86)/
+ ( Baseball $AB86 + Baseball $W86)
> Baseball $ career . onbase <- 100*
+ ( Baseball $ careerH + Baseball $ careerW )/
+ ( Baseball $ careerAB + Baseball $ careerW )
> Baseball $ arbitration <- as. numeric (( Baseball $years >= 3) &
+ ( Baseball $ years < 6))
> Baseball $ freeagent <- as. numeric ( Baseball $ years >= 6)
> Baseball $years <- log( Baseball $years)
> Baseball $ careerAB <- log( Baseball $ careerAB )
> vnames <- scan(what="", text='
+ AB H HR R RBI BB Years Career .AB Career .H
+ Career .HR Career .R Career .RBI
+ Career .BB PO A E salary MI CF C DH
+ AB.year H.year HR.year R.year RBI.year BB.year
+ AVG Career .AVG OBP Career .OBP arbitration freeagent
+ ')
Read 33 items
> # modify variable names to conform to text
> names( Baseball ) <- vnames
> # order as in Fig. 22.1
> vnames <- scan(what="", text='
+ salary Career .AB BB Career .H freeagent C Career .BB MI Career .R
+ H.year AB.year arbitration H A AB OBP CF DH Career .RBI RBI.year
+ BB.year RBI Career .OBP HR.year Career .HR Years R.year AVG
+ Career .AVG HR PO R E
+ ')
Read 33 items
> Baseball <- Baseball [, vnames ]
> dim( Baseball )
[1] 262 33

I proceeded to try to reproduce the results summarized in Figure 22.1 (page 683):
> library ("leaps") # for regsubsets ()

> mods <- regsubsets (log( salary ) ~ ., data=Baseball , nbest =1, nvmax =32)

> # reproduce Fig. 22.1: Plot of BIC for best model of each size
> par(cex =0.75) # make text a bit smaller
> plot(mods , digits =3, scale="bic", mar=c(10, 4, 2, 2) + 0.1)

Copyright © 2021 by John Fox. 140 All rights reserved.



bi
c

(I
nt

er
ce

pt
)

C
ar

ee
r.A

B

B
B

C
ar

ee
r.H

fr
ee

ag
en

t C

C
ar

ee
r.B

B M
I

C
ar

ee
r.R

H
.y

ea
r

A
B

.y
ea

r

ar
bi

tr
at

io
n H A

A
B

O
B

P

C
F

D
H

C
ar

ee
r.R

B
I

R
B

I.y
ea

r

B
B

.y
ea

r

R
B

I

C
ar

ee
r.O

B
P

H
R

.y
ea

r

C
ar

ee
r.H

R

Ye
ar

s

R
.y

ea
r

A
V

G

C
ar

ee
r.A

V
G

H
R

P
O R E

−300

−330

−340

−340

−350

−350

−360

−360

−370

−370

−370

−380

−380

−390

−390

−400

−400

−400

−400

−400

−410

−410

−410

−410

−420

−420

−420

−420

−420

−420

−420

−420

The careful reader will notice that this graph is almost, but not exactly, the same as the one in the
text. Because I used the same R code for the computations as for the text, I can’t account for the small
discrepancies.

I did these computations for the “best” model of each size (and decided not to bother with the best
10 or 15 regardless of size). Within a particular size—that is, number of coefficients—the several
model-selection criteria order the models identically, and so agree on which model is best, but the
various criteria penalize complexity differently and so need not agree across different sizes.

Here is some information about the models nominated by the criteria computed by regsubsets():
> sumry.mods <- summary (mods)
> mods. criteria <- with(sumry.mods , cbind (bic , cp , adjr2 , rsq ))
> which.min(mods. criteria [, "bic"])
[1] 11
> which.min(mods. criteria [, "cp"])
[1] 17
> which.max(mods. criteria [, "adjr2"])
[1] 19
> which.max(mods. criteria [, "rsq"])
[1] 32

> rownames (mods. criteria ) <- 1:32
> round(mods.criteria , 4)

bic cp adjr2 rsq
1 -297.7685 249.2568 0.6912 0.6924
2 -348.1138 153.7742 0.7496 0.7515

Copyright © 2021 by John Fox. 141 All rights reserved.



3 -366.5561 119.8904 0.7707 0.7733
4 -395.0088 76.3603 0.7978 0.8009
5 -401.4233 63.6805 0.8061 0.8098
6 -410.1768 48.9940 0.8157 0.8199
7 -417.8572 36.3490 0.8241 0.8288
8 -419.1331 31.0687 0.8279 0.8332
9 -417.9075 28.5469 0.8301 0.8360
10 -419.6567 23.0952 0.8341 0.8405
11 -419.7769 19.4445 0.8370 0.8439
12 -418.3749 17.3829 0.8390 0.8464
13 -416.9079 15.4473 0.8408 0.8487
14 -416.2705 12.7965 0.8432 0.8516
15 -412.4925 13.1295 0.8436 0.8526
16 -409.6798 12.5857 0.8446 0.8541
17 -407.3096 11.6668 0.8458 0.8559
18 -403.2350 12.3156 0.8461 0.8567
19 -400.1475 12.0886 0.8469 0.8581
20 -395.6546 13.1297 0.8469 0.8586
21 -390.9770 14.3385 0.8468 0.8591
22 -385.9963 15.8179 0.8465 0.8594
23 -381.0404 17.2766 0.8462 0.8598
24 -376.5576 18.3204 0.8462 0.8603
25 -371.5423 19.8347 0.8459 0.8606
26 -366.2824 21.5643 0.8454 0.8608
27 -360.8946 23.4062 0.8448 0.8609
28 -355.5242 25.2329 0.8443 0.8610
29 -350.0854 27.1196 0.8437 0.8611
30 -344.6027 29.0447 0.8431 0.8611
31 -339.0814 31.0036 0.8424 0.8611
32 -333.5171 33.0000 0.8417 0.8611

> xnames <- mods$ xnames
> which.x <- sumry.mods$which

> xnames [which.x[11, ]] # by bic
[1] "( Intercept )" " Career .AB" "BB" " Career .H"
[5] " freeagent " "C" " Career .BB" "MI"
[9] " Career .R" "H.year" "AB.year" "RBI.year"

> xnames [which.x[17, ]] # by cp
[1] "( Intercept )" " Career .AB" "BB" " Career .H"
[5] " freeagent " "C" " Career .BB" "MI"
[9] " Career .R" "H.year" "AB.year" " arbitration "

[13] "H" "A" "CF" "DH"
[17] " Career .RBI" "BB.year"

> xnames [which.x[19, ]] # by bic
[1] "( Intercept )" " Career .AB" "BB" " Career .H"
[5] " freeagent " "C" " Career .BB" "MI"
[9] " Career .R" " arbitration " "H" "A"

[13] "AB" "OBP" "CF" "DH"
[17] " Career .RBI" "RBI.year" "RBI" " Career .OBP"

The BIC prefers a more parsimonious model, with 11 predictors (plus the intercept), than Cp, with 17
predictors, or the adjusted R̃2, with 19. That said, almost all of the predictors in the model selected by
the BIC are also in the models selected by the other criteria. The unadjusted R2, of course, prefers the
largest model, with all 31 predictors.

Exercise 22.7*

Copyright © 2021 by John Fox. 142 All rights reserved.



Start with Equation 22.12 (page 680), and let j = 1 and j′ = 2. Then

2× log p(y|M1)
p(y|M2) = BIC2 − BIC1

If the prior probabilities for the two models are equal, then the posterior probabilities are proportional
to the likelihoods and

2× log p(M1|y)
p(M2|y) = BIC2 − BIC1

log p(M1|y)
p(M2|y) = 1

2BIC2 − 1
2BIC1

log p(M1|y)
1− p(M1|y) = 1

2BIC2 − 1
2BIC1

We recognize that this is the posterior log-odds (i.e., logit) for models 1 and 2, and we know how to
convert a logit into the corresponding probability: Pr = elogit/(1 + elogit). Applying this equation,

p(M1|y) =
exp( 1

2BIC2 − 1
2BIC1)

1 + exp( 1
2BIC2 − 1

2BIC1)

=
exp( 1

2BIC2) exp(− 1
2BIC1)

1 + exp( 1
2BIC2) exp(− 1

2BIC1)

=
exp(− 1

2BIC1)
1

exp( 1
2BIC2)

+ exp(− 1
2BIC1)

=
exp(− 1

2BIC1)
exp(− 1

2BIC2) + exp(− 1
2BIC1)

We can extend this result to m models {M1, . . . ,Mm} by using a set of logits (as in Section 14.2.1 on
polytomous logistic regression), comparing each model to an arbitrarily selected model (say, the last).
We then have

logitj ≡ log p(Mj |y)
p(Mm|y) = 1

2BICm − 1
2BICj

and
p(Mj |y) =

logitj
1 +

∑m−1
j′=1 logitj′

which (in very much the same manner as the two-model case considered above) simplifies to

p(Mj |y) =
exp(− 1

2BICj)∑m
j′=1 exp(− 1

2BICj′)

Copyright © 2021 by John Fox. 143 All rights reserved.



Exercises for Chapter 23
Exercise 23.1

Referring to Equations 23.9 and 23.10, the fitted fixed-effects part of the model is

̂mathach = (β̂1 + β̂2 × ses + β̂3sector)

(β̂4 + β̂5 × ses + β̂6 × ses2 + β̂7 × sector)× cses

with the terms rearranged to show the intercept and slope for cses at fixed values of ses (school-mean
SES) and sector (coded 0 for Public and 1 for Catholic).

To get the equations of the six regression lines shown in Figure 23.6, we can just use the values of the
β̂s in the table on page 715, along with the six combinations of values 0 and 1 for sector and −0.7 (low),
0 (medium), and 0.7 (high) for ses. It’s perfectly possible to do these computations on a calculator, but
it was more convenient for me to do them in R:
> beta <- c(12.128 , 5.337 , 1.225 , 3.140 , 0.755 , -1.647 , -1.516)

> fixedEffects <- function (beta , meanses , sector ){
+ intercept <- beta [1] + beta [2]* meanses + beta [3]* sector
+ slope <- beta [4] + beta [5]* meanses + beta [6]* meanses ^2 +
+ beta [7]* sector
+ c( intercept =intercept , slope=slope)
+ }

> fixedEffects (beta , meanses =-0.7, sector =0) # Public , low mean SES
intercept slope

8.39210 1.80447

> fixedEffects (beta , meanses =0, sector =0) # Public , medium mean SES
intercept slope

12.128 3.140

> fixedEffects (beta , meanses =0.7 , sector =0) # Public , low mean SES
intercept slope

15.86390 2.86147

> fixedEffects (beta , meanses =-0.7, sector =1) # Catholic , low mean SES
intercept slope

9.61710 0.28847

> fixedEffects (beta , meanses =0, sector =1) # Catholic , medium mean SES
intercept slope

13.353 1.624

> fixedEffects (beta , meanses =0.7 , sector =1) # Catholic , low mean SES
intercept slope

17.08890 1.34547

These intercepts and slopes are consistent with the lines drawn in Figure 23.6.

Exercise 23.3*

Following the hint and thinking about AV plots, in Model 1 the coefficient β̂(1)
2 is formed from two sets

of residuals: (1) residuals E(1)
Y from the regression of Yij on the j dummy variables for groups (and no

intercept); and (2) E(1)
X from the regression of Xij − X̄i· on the j dummy variables for groups. The

fitted values for these regressions are just the group means, Ȳi· in the first case and 0 in the second
case, so the two sets of residuals are respectively Yij − Ȳi· and Xij − X̄i·, and β̂(1)

2 is the least-squares

Copyright © 2021 by John Fox. 144 All rights reserved.



coefficient from the simple regression of the first set of residuals on the second (with no intercept,
because both sets of residuals have means of 0).

Now consider Model 5. The residuals E(5)
Y for the regression of Yij on X̄i· and an intercept are not the

same as the residuals E(1)
Y . In contrast, the residuals E(5)

X for the regression of Xij − X̄i·, on X̄i· and an
intercept are still the same as E(1)

X ; that is, the fitted values for this regression are still all 0 and thus
the residuals are still just Xij − X̄i·. Moreover, the difference E(5)

Y − E
(1)
Y is orthogonal to Xij − X̄i·,

and so the coefficient β̂(5)
2 for the regression of E(5)

Y on E(5)
X is the same as β̂(1)

2 for the regression of
E

(1)
Y on E(1)

X .

Exercise 23.5*

The simplest way I know to derive these estimating equations is to use a strategy from Stroup (2013,
Section 4.4) that decomposes the probability density for y as p(y) = p(y|δ)× p(δ). The response y
conditional on the random effects δ is multivariate normal with mean vector Xβ + Zδ and covariance
matrix σ2

εΛ, while δ is multivariate normal with mean vector 0 and covariance matrix Ψ∗. Using the
formula for the multivariate-normal density (see on-line Appendix D, Section D.3.5),

p(y) = p(y|δ)× p(δ)

= 1
(2π)n/2

√
σ2
ε det Λ

exp
[
− 1

2 (y−Xβ − Zδ)′ 1
σ2
ε

Λ−1(y−Xβ − Zδ)
]

× 1
(2π)mq/2

√
det Ψ∗

exp
(
− 1

2δ
′Ψ∗−1δ

)
The next step is to convert this density to a log-likelihood for β and δ. We know that we can ignore the
constants 1/(2π)n/2 and 1/(2π)mq/2. Our experience with least-squares and generalized-least-squares
regression tells us that for purposes of maximizing the likelihood, we can also ignore the terms involving
the determinants of the covariance matrices and simply concentrate on the exponents. Then,

loge L(β, δ) = − 1
2 (y−Xβ − Zδ)′ 1

σ2
ε

Λ−1(y−Xβ − Zδ)− 1
2δ
′Ψ∗−1δ

Differentiating the log-likelihood with respect to β and δ,
∂ loge L(β, δ)

∂β
= 2

2σ2
ε

[
−X′Λ−1(y−Xβ − Zδ)

]
∂ loge L(β, δ)

∂δ
= 2

2σ2
ε

Z′Λ−1(y−Xβ − Zδ)− 2
2Ψ∗−1δ

Setting the derivatives to 0 produces estimating equations for β and δ. We can eliminate σ2
ε from the

first such equation, obtaining after rearrangement

X′Λ−1Xβ̂ + X′Λ−1Zδ̂ = X′Λ−1y

We can simplify the second equation a bit by multiplying it by σ2
ε , to get, again after rearrangement,

Z′Λ−1Xβ̂ + Z′Λ−1Zδ̂ + σ2
εΨ∗−1δ̂ = Z′Λ−1y

To verify that these two estimating are equivalent to the partitioned-matrix Equation 23.19 in the text,
simply multiply out the latter.

The remainder of this exercise is very tedious, and I should not have casually posed the question as I
did. The details are given, for example, by Stroup (2013) (though with different notation). The result,
however, is of interest, because the formula β̂ = (X′Θ−1X)−1X′Θ−1y for the fixed effects explains
why this is called the GLS estimator. That is, the weight matrix Θ−1 is the inverse of the covariance
matrix of y, as shown in Exercise 23.4.

Copyright © 2021 by John Fox. 145 All rights reserved.



Exercises for Chapter 24
Exercise 24.1

(a) The graph of fixed effects in Figure 24.1 is based on the simplified model with parameter estimates
given in the table on page 747:

̂logit(πij) = β̂1 + β̂2M1i + β̂3M2i + β̂4Pij + β̂6
√
T1ij

where M1 is a dummy regressor coded 1 for subjects in the reduced medication group and 0
otherwise; M2 is a dummy regressor coded 1 for subjects in the continuing medication group and
0 otherwise; P is a dummy regressor coded 1 posttreatment and 0 before; and T1 is time (in days)
post-treatment, coded 0 during the pretreatment period.

To produce Figure 24.1, let time run from -29 to 99 days, corresponding to values of T1 from 0 (for
time ≤ 0) through 99 (for time > 0), and values of P of 0 (for time ≤ 0) and 1 (for time > 0); let
the dummy regressors M1 and M2 respectively take on the values 0 and 0 for the no-medication
group, 1 and 0 for the reduced-medication group, and 0 and 1 for the continuing medication group.
Substitute these combinations of values for the regressors into the fitted fixed-effects equation to
compute the fitted logit in each case. Finally, convert the logits to fitted probabilities in the usual
manner, ̂Pr(headache) = 1/[1 + exp(−logit)].

(b) After reading the data set from the website for the text, I do some data management, and then
fit the model reported in Figure 24.1 and the table on page 747 in the text, using the glmer()
function in the lme4 package for R:
> url <- paste(c("https:// socialsciences . mcmaster .ca",
+ "jfox", "Books",
+ "Applied -Regression -3E", " datasets ",
+ " Migraines .txt"),
+ collapse ="/")
> Migraines <- read.table (url , header =TRUE , stringsAsFactors =TRUE)

> # data management :

> Migraines $ treatment <- factor (with(Migraines ,
+ ifelse (time > 0, "yes", "no")))
> Migraines $ pretreat <- with(Migraines , ifelse (time > 0, 0, time ))
> Migraines $ posttreat <- with(Migraines , ifelse (time > 0, time , 0))
> # reorder levels
> Migraines $ medication <- factor ( Migraines $ medication ,
+ levels =c("None", " Reduced ", " Continuing "))

> library ("car") # for brief ()
Loading required package : carData

> brief(Migraines , c(25, 10))
4152 x 7 data. frame (4117 rows omitted )

id headache time medication treatment pretreat posttreat
[i] [f] [i] [f] [f] [n] [n]

1 1 yes -11 Continuing no -11 0
2 1 yes -10 Continuing no -10 0
3 1 yes -9 Continuing no -9 0
4 1 yes -8 Continuing no -8 0
5 1 yes -7 Continuing no -7 0
6 1 yes -6 Continuing no -6 0
7 1 yes -5 Continuing no -5 0
8 1 yes 22 Continuing yes 0 22
9 1 yes 23 Continuing yes 0 23

Copyright © 2021 by John Fox. 146 All rights reserved.



10 1 yes 24 Continuing yes 0 24
11 1 yes 25 Continuing yes 0 25
12 1 yes 26 Continuing yes 0 26
13 1 no 28 Continuing yes 0 28
14 1 yes 29 Continuing yes 0 29
15 1 yes 30 Continuing yes 0 30
16 1 yes 31 Continuing yes 0 31
17 1 yes 32 Continuing yes 0 32
18 1 yes 33 Continuing yes 0 33
19 1 yes 34 Continuing yes 0 34
20 1 yes 35 Continuing yes 0 35
21 2 yes 1 Continuing yes 0 1
22 2 yes 2 Continuing yes 0 2
23 2 no 3 Continuing yes 0 3
24 2 yes 4 Continuing yes 0 4
25 2 yes 5 Continuing yes 0 5
. . .
4143 133 yes 37 Continuing yes 0 37
4144 133 yes 40 Continuing yes 0 40
4145 133 yes 41 Continuing yes 0 41
4146 133 no 42 Continuing yes 0 42
4147 133 yes 43 Continuing yes 0 43
4148 133 yes 44 Continuing yes 0 44
4149 133 no 45 Continuing yes 0 45
4150 133 no 46 Continuing yes 0 46
4151 133 no 47 Continuing yes 0 47
4152 133 yes 48 Continuing yes 0 48

> library ("lme4") # for glmer ()

> m.mig .1 <- glmer( headache ~ medication + treatment + sqrt( posttreat )
+ + (1 + treatment + sqrt( posttreat ) | id),
+ data=Migraines , family =binomial ,
+ control = glmerControl ( optimizer =" nlminbwrap "))
> summary (m.mig .1)
Generalized linear mixed model fit by maximum likelihood ( Laplace

Approximation ) [ glmerMod ]
Family : binomial ( logit )

Formula :
headache ~ medication + treatment + sqrt( posttreat ) + (1 + treatment +

sqrt( posttreat ) | id)
Data: Migraines

Control : glmerControl ( optimizer = " nlminbwrap ")

AIC BIC logLik deviance df. resid
4369.0 4438.6 -2173.5 4347.0 4141

Scaled residuals :
Min 1Q Median 3Q Max

-5.1816 -0.6463 0.2600 0.5801 3.6904

Random effects :
Groups Name Variance Std.Dev. Corr
id ( Intercept ) 1.70114 1.3043

treatmentyes 1.71268 1.3087 -0.12
sqrt( posttreat ) 0.05708 0.2389 0.11 -0.66

Number of obs: 4152 , groups : id , 133

Fixed effects :

Copyright © 2021 by John Fox. 147 All rights reserved.



Estimate Std. Error z value Pr(>|z|)
( Intercept ) -0.24585 0.34377 -0.715 0.47451
medicationReduced 2.05011 0.46784 4.382 1.18e -05 ***
medicationContinuing 1.15530 0.38372 3.011 0.00261 **
treatmentyes 1.06085 0.24386 4.350 1.36e -05 ***
sqrt( posttreat ) -0.26844 0.04486 -5.984 2.18e -09 ***
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects :
(Intr) mdctnR mdctnC trtmnt

medictnRdcd -0.674
mdctnCntnng -0.828 0.656
treatmentys -0.215 -0.053 -0.049
sqrt(psttr) 0.016 -0.009 -0.002 -0.685

These results are almost identical to those in the text, with some parameters differing in the
last decimal place reported in the output. The very small discrepancies are almost surely due to
changes in the lme4 package since the computations were done for the text; to get the computation
to converge, I had to use a non-default optimizer for the glmer() function, which wasn’t originally
necessary. That suggests that the random effects are nearly too complicated to be reliably estimated
from the data.

Indeed, when I proceeded to specify an alternative model using a natural regression spline with 4
degrees of freedom, I found that I couldn’t get the model to converge. This model is more complex
than the model fit in the text, which uses 1 degree of freedom for time posttreatment, adding
many additional covariance components. I therefore eliminated the spline term from the random
effects, fitting the following GLMM:
> library (" splines ") # for ns()
>
> m.mig .2 <- glmer( headache ~ medication + treatment +
+ ns(posttreat , df =4)
+ + (1 + treatment | id),
+ data=Migraines , family =binomial ,
+ control = glmerControl ( optimizer =" nlminbwrap "))
> summary (m.mig .2)
Generalized linear mixed model fit by maximum likelihood ( Laplace

Approximation ) [ glmerMod ]
Family : binomial ( logit )

Formula :
headache ~ medication + treatment + ns(posttreat , df = 4) + (1 +

treatment | id)
Data: Migraines

Control : glmerControl ( optimizer = " nlminbwrap ")

AIC BIC logLik deviance df. resid
4382.3 4451.9 -2180.1 4360.3 4141

Scaled residuals :
Min 1Q Median 3Q Max

-6.6486 -0.6627 0.2640 0.6017 3.4805

Random effects :
Groups Name Variance Std.Dev. Corr
id ( Intercept ) 1.7305 1.3155

treatmentyes 0.8882 0.9424 -0.05
Number of obs: 4152 , groups : id , 133

Copyright © 2021 by John Fox. 148 All rights reserved.



Fixed effects :
Estimate Std. Error z value Pr(>|z|)

( Intercept ) -0.2006 0.3431 -0.585 0.558695
medicationReduced 1.9826 0.4636 4.277 1.90e -05 ***
medicationContinuing 1.1249 0.3845 2.925 0.003439 **
treatmentyes 1.0849 0.3143 3.452 0.000556 ***
ns(posttreat , df = 4)1 -1.2369 0.2616 -4.728 2.26e -06 ***
ns(posttreat , df = 4)2 -1.3702 0.3054 -4.486 7.25e -06 ***
ns(posttreat , df = 4)3 -2.5820 0.6315 -4.089 4.34e -05 ***
ns(posttreat , df = 4)4 -2.1902 0.3745 -5.848 4.98e -09 ***
---
Signif . codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects :
(Intr) mdctnR mdctnC trtmnt n(,d=4)1 n(,d=4)2 n(,d=4)3

medictnRdcd -0.675
mdctnCntnng -0.828 0.652
treatmentys -0.153 -0.037 -0.042
ns(ps ,d=4)1 -0.001 -0.002 0.004 -0.756
ns(ps ,d=4)2 0.003 -0.017 -0.001 -0.460 0.285
ns(ps ,d=4)3 -0.003 -0.009 0.008 -0.789 0.753 0.585
ns(ps ,d=4)4 -0.021 -0.001 0.034 -0.213 0.328 -0.075 0.393

Finally, I plot the fixed effects from the two models, with the graph on left reproducing Figure 24.1
in the text:
> # create graphs for fixed effects

> new .1 <- expand .grid( treatment ="yes", posttreat =1:99 ,
+ medication =c(" Reduced ", " Continuing ", "None"))
> new .1$ treatment <- factor ("yes", levels =c("no", "yes"))
> new .2 <- expand .grid( treatment ="no", posttreat = -29:0 ,
+ medication =c(" Reduced ", " Continuing ", "None"))
> new .2$ posttreat <- 0
> new .2$ treatment <- factor ("no", levels =c("no", "yes"))
> new <- rbind(new .2, new .1)
> new$ medication <- factor (new$medication ,
+ levels =c("None", " Reduced ", " Continuing "))
> new$time <- c(rep ( -29:0 , 3), rep (1:99 , 3))
> brief(new)
387 x 4 data. frame (382 rows omitted )

treatment posttreat medication time
[f] [n] [f] [i]

1 no 0 Reduced -29
2 no 0 Reduced -28
3 no 0 Reduced -27
. . .
386 yes 98 None 98
387 yes 99 None 99

> new$fit .1 <- predict (m.mig .1, newdata =new , re.form=NA)
> new$p.1 <- 1/(1 + exp(-new$fit .1))

> new$fit .2 <- predict (m.mig .2, newdata =new , re.form=NA)
> new$p.2 <- 1/(1 + exp(-new$fit .2))

> par(mfrow=c(1, 2))

> plot(p.1 ~ time , type="n", data=new , ylim=c(.15 , .95) ,

Copyright © 2021 by John Fox. 149 All rights reserved.



REFERENCES REFERENCES

+ xlab="Time (days)", ylab=" Fitted Probability of Headache ",
+ main= expression ("(a) Model with" ~ sqrt(time )))
> abline (v=0, col="gray")
> lines(p.1 ~ time , subset = medication == "None", data=new , lty =1)
> lines(p.1 ~ time , subset = medication == " Reduced ", data=new , lty =2)
> lines(p.1 ~ time , subset = medication == " Continuing ", data=new , lty =3)
> legend (" topright ", lty =1:3 , legend =c("None", " Reduced ", " Continuing "),
+ title=" Medication ", inset =.02 , cex =0.75)

> plot(p.2 ~ time , type="n", data=new , ylim=c(.15 , .95) ,
+ xlab="Time (days)", ylab=" Fitted Probability of Headache ",
+ main= expression ("(b) Model with B- spline in time"))
> abline (v=0, col="gray")
> lines(p.2 ~ time , subset = medication == "None", data=new , lty =1)
> lines(p.2 ~ time , subset = medication == " Reduced ", data=new , lty =2)
> lines(p.2 ~ time , subset = medication == " Continuing ", data=new , lty =3)

−20 0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

(a) Model with time

Time (days)

F
itt

ed
 P

ro
ba

bi
lit

y 
of

 H
ea

da
ch

e

Medication

None
Reduced
Continuing

−20 0 20 40 60 80 100

0.
2

0.
4

0.
6

0.
8

(b) Model with B−spline in time

Time (days)

F
itt

ed
 P

ro
ba

bi
lit

y 
of

 H
ea

da
ch

e

The two fits are very similar.

References
A. C. Atkinson. Plots, Transformations, and Regression: An Introduction to Graphical Methods of Diagnostic
Regrtession Analysis. Clarendon Press, Oxford, 1985.

J. Fox and S. Weisberg. An R Companion to Applied Regression. Sage, Thousand Oaks CA, third edition,
2019.

W. Greene. Accounting for excess zeros and sample selection in Poisson and negative binomial regression
models. Working papers, New York University, Leonard N. Stern School of Business, Department of
Economics, 1994. URL https://EconPapers.repec.org/RePEc:ste:nystbu:94-10.

J. Kmenta. Elements of Econometrics. Macmillan, New York, second edition, 1986.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.

Copyright © 2021 by John Fox. 150 All rights reserved.

https://EconPapers.repec.org/RePEc:ste:nystbu:94-10
https://www.R-project.org/


REFERENCES REFERENCES

P. J. Ribeiro Jr, P. J. Diggle, M. Schlather, R. Bivand, and B. Ripley. geoR: Analysis of Geostatistical Data,
2020. URL https://CRAN.R-project.org/package=geoR. R package version 1.8-1.

W. W. Stroup. Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press,
Boca Raton FL, 2013.

R. J. Wonnacott and T. H. Wonnacott. Econometrics. Wiley, New York, second edition, 1979.

Copyright © 2021 by John Fox. 151 All rights reserved.

https://CRAN.R-project.org/package=geoR

