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This document provides worked-out answers to the odd-numbered exercises in bonus Chapter 26 on causal
directed acyclic graphs (DAGs) (excluding the data-analysis exercises on the website for the text). The
answers to both odd- and even-numbered questions, are available from the author for instructors using the
text in a college or university class.

Although the text is written to be software-neutral, some of the exercises require the use of statistical software.
I employed the R statistical computing environment (R Core Teaml| [2022) for these exercises, particularly the
dagitty package (Textor et al., 2017 )E| but you should feel free to substitute other appropriate statistical
software for R. See [Fox and Wesberg| (2019)) for an introduction to R in the context of regression analysis that
largely overlaps with the text.

T used the dagitty package in preparing the chapter, but with a cusomized plot() method to draw DAGs for "dagitty"
objects. The plots of DAGs in these exercise answers are prepared with the plot() method from the daggity package.



Exercises for Chapter 26

Exercise 26.1

There are two back-door paths: X «—V +— W — U — Y and X «+— W — U — Y. Both can
be blocked by controlling either for W or for U. The latter is farther from X and closer to Y, so it
should provide the most efficient estimator. There are many other possibilities that control for more
than one variable, for example, controlling for both W and U or for U and V', but if the DAG is correct,
these would provide relatively inefficient, if still unbiased, estimators of the effect of X on Y.

Here’s what dagitty says:

> library("dagitty")

> g <- dagitty('dag{

+ X >Y

<=V

->Y

-> X

<-W ->1U
[exposure,pos="-0.5, -0.5"]
[outcome,pos="0.5, -0.5"]
[pos="-0.5, 0.25"]
[pos="0.5, 0.25"]
[pos="0, 0.5"]

+ + + + + + + + 4+
S a<Ss<MX<=gx

+ 1)
> plot(g)

X Y

W

adjustmentSets(g, type="minimal")
U}

W}

adjustmentSets(g, type="all")
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Exercise 26.3

(a) Here are my computations, with the model regressing ¥ on X and W added:

> library("car") # for compareCoefs()

Loading required package:

carData

> # a convenience function to compare residual standard errors:

models <- list(.

return(invisible

}

n <- 1000
w <- rnorm(n)
<- rnorm(n)
<- w + rnorm(n,

ml <- Im(y ~ x)

m2 <- 1lm(y ~ x + u
m3 <- Im(y ~ x + v
m4 <- Im(y ~ x + u
mb <- Im(y ~ x + u
m6 <- Im(y ~ x + u
m7 <- Im(y ~ x + w

VVVVVVVVYVVVVVVYV + + + + + V

Calls:

1: Im(formula = y ~

2: Im(formula =y ~

3: lm(formula = y ~

4: Im(formula = y ~

5: Im(formula = y ~

6: lm(formula =y ~

7: lm(formula =y ~
Model 1

(Intercept) -0.02700

SE 0.03273

X 1.03263

SE 0.03220

u

SE

v

SE

W

SE

L)

(sigmas))

sd=0.25)

)

)

+ v)

+ W)

+ v+ ow)

)

x)
u)

V)

MM M M M M
+ o+ o+ o+ A+ +

W)

Model 2
0.00377
0.01288

0.16610
0.01727

0.8882
0.0120

u + v)
u + w)
u+ v+ ow

compareSigmas <- function(..., digits=4){
sigmas <- sapply(models, function(m) summary(m)$sigma)
print(sigmas, digits=digits)

set.seed(3708531) # for reproducibility

v
X

y <- x + v + rnorm(n, sd=0.25)
u <- w + v + rnorm(n, sd=0.25)

compareCoefs(ml, m2, m3, m4, mb5, m6, m7)

Model 3 Model 4 Model 5 Model 6 Model 7
0.00594 0.00600 0.00714 0.00590 -0.02735
0.00809 0.00808 0.01096 0.00808 0.03269

0.99763 0.95616 0.93035 0.93883 0.82083
0.00796 0.02288 0.04177 0.03082 0.12465

0.0441 0.9458 0.0243
0.0228 0.0106 0.0328

0.99280 0.94867 0.96812
0.00802 0.02420 0.03350

-0.8766 0.0385 0.2263
0.0449 0.0458 0.1287

> compareSigmas(ml, m2, m3, m4, m5, m6, m7)
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[1] 1.0349 0.4071 0.2558 0.2554 0.3463 0.2555 1.0338

Adding the model regressing Y on X and W (m7) nicely makes the point that unnecessarily
controlling for a cause of X, as here, serves to inflate the standard error of the coefficient of X by
increasing collinearity without reducing the error variance. We therefore don’t bias the estimator
of this coefficient, but we make the etimator much less precise. Contrast this with model 3, which
regresses Y on X and V. The latter is a direct cause of Y; including it as a covariate reduces the
error variance and thus increases the precision of the estimator of the coefficient of X .

Here is daggity’s analysis of the DAG for this exercise:

> library("dagitty")

> g <- dagitty('dag{

+ W->X->Y<-V

-> U <=V
[exposure,pos="-0.5, -0.5"]
[outcome,pos="0.5, -0.5"]
[pos="-0.5, 0"]

[pos="0.5, 0"]

[pos="0, 0.5"]

+ + + + + +
o< =M=

+ 1)

> plot(g)
X Y
W \%

U

> adjustmentSets(g, type="minimal")
{
> adjustmentSets(g, type="all")
{3
v}

<
(-

>

}

L

W
, W
, V, W3

sCollider(g, "W", "U", "V")

{
{U
{w
{U,
{v
{U
> i
1 TRUE

[1

(b) Here are the added-variable plots for X in models 1 (with X alone), 2 (with X and the collider U),

Copyright © 2023 by John Fox. 4 All rights reserved.



3 (X and the covariate V'), and 5 (X, U, and W):

> avPlot(ml, "x", ellipse=TRUE, id=FALSE, main="Model 1 (X)",
+ xlim=c(-4, 4), ylim=c(-4, 4))

> abline(0, 1, col="magenta", lty=2, lwd=2)

Model 1 (X)
< —
N p—
(%]
g
g © -
-
N
|
< _|
|

X | others

> avPlot(m2, "x", ellipse=TRUE, id=FALSE, main="Model 2 (X, U)",
+ xlim=c(-4, 4), ylim=c(-4, 4))
> abline(0, 1, col="magenta", lty=2, lwd=2)
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Model 2 (X, U)
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> avPlot(m3, "x", ellipse=TRUE, id=FALSE, main="Model 3 (X, V)",
+ xlim=c(-4, 4), ylim=c(-4, 4))
> abline(0, 1, col="magenta", 1lty=2, lwd=2)
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Model 3 (X, V)
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X | others

> avPlot(m5, "x", ellipse=TRUE, id=FALSE, main="Model 5 (X, U, W)",
+ xlim=c(-4, 4), ylim=c(-4, 4))
> abline(0, 1, col="magenta", 1lty=2, lwd=2)
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Model 5 (X, U, W)

y | others

X | others

I added the population regression line with slope Sx = 1 (the broken magenta line) to each
plot, along with data ellipses scaled to enclose 50 and 95% of the data for bivariately normally
distributed variables. T also used the same axis scales for the four graphs, to facilitate comparisons
among them.

The following points are noteworthy:

e The AV plot for X in model 1 is just the scatterplot for Y versus X, centering the two variables
to 0 means.

e The bias of By in model 2, which controls for the collider U, is apparent. The slope estimates
Byx for the other models are very close to Sx = 1.

e The increased precision of Bx in model 3, relative to model 1 as a consequence of including
the covariate V is apparent in the tighter spread of points around the regression line in the
AV plot, representing smaller residual variation.

e In contrast, the decreased precision of Bx in model 5 relative to model 1 as a consequence of
including U and W in the model is apparent in the decreased conditional variation in X (i.e.,
horizontal spread) in the AV plot.
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Exercise 26.5

(a) It’s apparent from the DAG that C; and Cj are also d-separated and hence unconditionally
independent.

(b) Yes, there are {Ci,Ca, My, M3}, {C1,Cs, My, My}, and {Cq,Cs, M1, M3}, and thus (Y L
X)|(01,CQ,M1,M3), (Y A X)|(Ol,03,M1,M2)7 and (Y 1 X)|(Cl,Cg7M1,M3).

(c) Here’s dagitty’s analysis, showing many, but not all conditional independencies (and unconditional
independencies
> library("dagitty")
> g <- dagitty('dag{
+ X ->M2 ->M3 ->Y

+ X ->ML —>Y
+ X<-C1 >Y
+ X<-C2 ->C3 >Y
+ X > K1 <- K2 <-Y
+ K1 -> K3
+ X [exposure,pos="0, 0"]
+ Y [outcome,pos="1, 0"]
+ M1 [pos="0.5, -0.25"]
+ M2 [pos="0.33, -0.5"]
+ M3 [pos="0.67, -0.5"]
+ Cl1 [pos="0.5, 0.25"]
+ C2 [pos="0.33, 0.5"]
+ C3 [pos="0.67, 0.5"]
+ K1 [pos="0.25, 0.75"]
+ K2 [pos="0.75, 0.75"]
+ K3 [pos="0.25, 1"]
+ 3"
>
> plot(g)
M2 M3
M1
X Y
C1
C2 C3
K1 K2

K3

2 Asking dagitty to report all pair-wise independencies reported 6802 of them and took abot half a minute on a reasonably
fast laptop.
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X

X

X

Ci, C3, M1, M3
ci1, C3, M1, M2

M1,
M2,
M1,
M3,

M1,
M2,
M1,
M3,

>

{cCc1, Cc2}

{c1, C3}

{c1, c2, C3}

>

C1 _|I_c2

Cc1 _|l_c3

Cl1 _|l_Ki | K2, X
1 |l_Kt | X, Y
Cl1 _II_K2 1Y

Cl1 _|l_K3 | K1

C1 _Il_K3 | K2, X
c1 _II_K3 | X, Y
Cl _|l_M1 | X

c1 _Il_M2 | X

C1 _Il_M3 | M2

C1 _Il_M3 | X

c2 _|l_Ki | K2, X
c2 _II_KL | X, Y
c2 _|l_K1 | c1, C3,
C2 II_K2 1| Y

Cc2 _|I_ K2 |

Cc2 _I|I_ K2 |

c2 _|l_Kk2 | c1, cs3,
c2 |l_K3 | K1

c2 |l_K3 | K2, X
c2 Il_K3 | X, Y
c2 _Il_K3 | c1, Cs3,
c2 _|l_M1 | X

c2 _Il_M2 | X

c2 _|l_M3 | M2

c2 _|l_M3 | X

c2 _|l_Y | c1, ¢3, M1, M3
c2 _|l_Y | C1, €3, M1, M2
c2 _Il_Yy | c1, c3, X
c3 ||_K1 | K2, X
C3 _II_K1L | X, Y
c3 _|l_ K1 | c1, C2,
c3 _|l_Ki | c1, Cc2,
c3 _|l_K1 | c1, C2,
c3 _|l_K1 | c1, C2,
C3 _II_K2 1Y

c3 _|l_K3 | K1

C3 _|l_K3 | K2, X
C3 IlI_K3 | X, Y
c3 _Il_K3 | c1, c2,
c3 _|l_K3 | c1, C2,
c3 _Il_K3 | c1, C2,
Cc3 _Il_K3 | c1, c2,
c3 _|I_M1 | X

c3 _|l_M1 | c2

c3 _||_M2 | X

c3 _|I_M2 | C2

Copyright © 2023 by John Fox.

adjustmentSets(g, type="all")

M2

M3

M2

M3

impliedConditionalIndependencies(g, type="missing.edge")
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C3
C3
C3
C3
K1
K1
K1
K1
K1
K1
K1
K1
K1
K1
K1
K1
K1
K1
K1
K1
K2
K2
K2
K2
K2
K2
K2
K2
K2
K2
K2
K2
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3
K3

M3 | M2
M3 | X
M3 | C2
X | C2
M1 | X, Y
M1 | K2, X
M2 | M3, X
M2 | X, Y
M2 | K2, X

M3
X, Y

K2, X

c1, C3, K2,
c1, C2, K2,
c1, C3, K2,
c1, C2, K2,
K2, X

K1

Y

M3, X

Y
Y

c1, C2, M1,
c1, C2, M1,
c1, C3, M1,
c1, C3, M1,
Y

X, Y

K2, X

K1

M3, X

X, Y

K2, X

K1

=
N

X, Y

K2, X

K1

K1

c1, C3, K2,
c1, C2, K2,
c1, C3, K2,
c1, C2, K2,
K2, X

K1
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I
I
I
|
|
M3 | C1, C3, M1, M2, Y
I
I
|
|
I

ci, C2, M1, M2, Y

C1, C3, K2, M1, M2
c1, C2, K2, M1, M2

M1, M3
M1, M3
M1, M2
M1, M2

ci1, C2, M1, M3
C1, C3, M1, M3

M2
M3
M2
M3

C1, C3, M1, M2, Y
C1, C2, M1, M2, Y

C1, C3, K2, M1, M2
C1, C2, K2, M1, M2

M1, M3
M1, M3
M1, M2
M1, M2
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ML _|I_M2 | X

ML _|I_ M3 | M2

M1 _|l_ M3 | X

M2 _|I_Y | Ct, C3, M1, M3
M2 _|l_Y | Cc1, C2, M1, M3
M2 _||l_Y | M3, X

M3 _Il_ X | M2

X _Il_Y | Ct, C3, M1, M3
X _Il_y | c1, c2, M, M3
X _Il_Y | c1, C3, M1, M2
X _Il_Y | c1, c2, M1, M2
> # note: try setting type="all.pairs", but be prepared to wait awhile

Exercise 26.7

(a) No, I don’t find the proposed m-graph plausible because it seems unlikely to me that missingness

in the several observed variables is independent—that is, I expect there to be dependencies among
Mg, Mg, Mc and My. See part (b) for an m-graph that treats the missingness indicators as
dependent.

Let’s assume the reasonableness of the m-graph. The relevant sets of variables are V. (i.e., the set
of completely observed variables), which is empty; V,,, = {G, E,C, I} (the completely observed
versions of the variables with missing data); V* = {G*, E*,C*, I*} (the observed variables with
missing data); and M = {M¢g, Mg, M, Mp} (the missingness indicators). There are no latent
variables. From the DAG, it’s apparent that each of the variables in V,, is independent of all of
the variables in M (the starred variables in V* are effectively colliders blocking paths between the
variables in V,, and in M), and so the missing data are MCAR. We could do a complete-case
analysis or use multiple imputation to estimate the regression.

Here’s daggity’s analysis of pairwise independencies (though avoiding the time-consuming compu-
tation of all pairwise independencies):

> library("dagitty")
> g <- dagitty('dag{
+ G ->E

-> GS <- MG

<- ME

-> CS <- MC

-> IS <- MI
[pos="c(0, 0)"]
[pos="c(0.2, 0.1)"]
[pos="c(0.4, 0.1)"]
[pos="c(0.6, 0.0)"]
[pos="c(0, 0.05)"]
[pos="c(0.2, 0.15)"]
[pos="c(0.4, 0.15)"]
[pos="c (0.6, 0.05)"]
[pos="c(0, 0.1)"]
[pos="c(0.2, 0.2"]
[pos="c(0.4, 0.2)"]
[pos="c (0.6, 0.1)"]

HQMm@HmOoOHQEHOQOQMEMEOQ®Q
|
Vv
[x3]
n

+ 4+ + + F A+ A+ o+ + +
EERERHQmQ
QS wnnuvn

=
=
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+ 3

> plot(g)
G I
GS IS
MG E C MI

ES CS
ME MC

> impliedConditionalIndependencies(g, type="missing.edge")

C _II_ES | E

C_lI_Gs | G

C_II_Is|1I

C _Il_MC

C _Il_ME

C _Il_MG

C _II_M

cs _II_E I C

CS _|I_ES | E

cs _II_ES | C

cs _IlI_G I C

Cs _IlI_GS | G

cs _II_Gs | C

cs _Il_11C

CcS _IlI_Is | I

cs _II_Is | C

Cs _II_ ME

Cs _II_ MG

Cs _II_MI

E_[I_GS | G

Copyright © 2023 by John Fox. 13 All rights reserved.



E _IlI_Is | I
E _IlI_MC

E ||_ME

E _|l_ MG

E _|l_M

ES _II_G | E
ES _II_GS | G
ES _|I_GS | E
ES _|I_TI | E
ES _Il_1Is | I
ES _IIl_ IS |
ES _|I_MC

ES _|I_ MG

ES _||_ MI

G _Il_1Is |1
G _Il_MC

G _Il_ME

G _Il_MG

G _Il_MI

GS _II_TI | G
GS _|l_1Is | I
GS _|II_Is | G
GS _I|I_MC

GS _|I_ ME

GS _|I_MI

I _|I_MC

I _|I_ME

I _II_MG

I _|I_MI

IS _II_ MC

IS _I|_ ME

IS _Il_ MG

MC _||_ ME

MC _II_ MG

MC _||_ MI

ME _||_ MG

ME _||_ MI

MG _||_ MI

(b) I believe that this structure is more plausible, with a common latent variable particular to country
affecting all of the missingness indicators. The problem that this induces, however, is that missing
data are now neither MCAR nor MAR.

The sets of variables V.. (still empty), V,,,, V*, and M are the same as before, but now the set
of latent variables isn’t empty, £ = {w}. The latent variable w is obviously not independent of
M (since it directly affects each variable in M), ruling out MCAR. Nor is w independent of M
given V., since the latter is empty. Given the tools of the chapter, that leaves us with no way to
estimate the model.

Here’s dagitty’s analysis:
> g <- dagitty('dag{

+ G > E
+ G > C
+ G —>1

Copyright © 2023 by John Fox. 14 All rights reserved.



+ E->C

+ E->I

+ C—>1I

+ G -> GS <- MG <- omega

+ E -> ES <- ME <- omega

+ C -> CS <- MC <- omega

+ I -> IS <- MI <- omega

+ G [pos="c(0, 0)"]

+ E [pos="c(0.2, 0.1)"]

+ C [pos="c(0.4, 0.1)"]

+ I [pos="c(0.6, 0.0)"]

+ GS [pos="c(0, 0.05)"]

+ ES [pos="c(0.2, 0.15)"]

+ CS [pos="c(0.4, 0.15)"]

+ IS [pos="c(0.6, 0.05)"]

+ MG [pos="c(0, 0.1)"]

+ ME [pos="c(0.2, 0.2"]

+ MC [pos="c(0.4, 0.2)"]

+ MI [pos="c(0.6, 0.1)"]

+ omega [pos="c(0.3, 0.3)"]

+ 1)

> plot(g)
G I
GS IS
MG E C MI

ES CS

ME MC

omega
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impliedConditionalIndependencies(g, type="missing.edge")
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