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Abstract

After presenting some basic ideas concerning missing data, this appendix explains briefly
how multiple imputation of missing data works, and then illustrates, using the mice package,
how to apply this method to estimating a regression model in the presence of missing data.

In fitting statistical models in the R Companion, we deal with missing data by performing a
complete-case analysis, removing all cases with missing values for any of the variables that appear in
the model. When we fit more than one model to the same data set, we are careful to filter the data
set to remove cases with missing values for variables that appear in any of the models, to insure that
we fit all of the models to a consistent subset of cases, making it possible, for example, to compare
nested models by likelihood-ratio tests.

Complete-case analysis is far from the worst strategy for dealing with missing data, and it can
be a good strategy if only a small proportion of cases have missing values, but in many situations
it can lead to seriously biased estimates and in others to inefficient estimates that don’t make good
use of the available data. This appendix introduces multiple imputation, an alternative, and more
principled, strategy for dealing with missing data that provides more reasonable results under certain
circumstances (explained below). We begin by making some key distinctions, proceed to explain how
multiple imputation of missing data works, and conclude with an example using the mice package
for R. There are other packages in R that implement various versions of multiple imputation for
missing data, including the norm (Schafer, 2013), cat (Schafer, 2012), mix (Schafer, 2017), mi (Su
et al., 2011), and Amelia packages (Honaker et al., 2011).

Multiple imputation of missing data, and, more generally, estimation in the presence of missing
data, are large topics. We merely scratch the surface here. For more information, see the references
given at the end of the appendix. In particular, our presentation here adapts some materials from
Fox (2016, Chap. 20).

1 Basic Ideas

Let the matrix Xn×p represent a complete data set with n cases and p variables, some of whose
elements, in Xobs, are observed, and others, in Xmis, are missing.1 We use the term missing data for
values that exist but aren’t observed, not for values that are undefined. For example, an employed
individual’s income that is unreported in a sample survey is missing, but the age of a childless
respondent’s oldest child is undefined. Both missing data and undefined data normally are coded as
NA in an R data set.

In a seminal work on estimation with missing data, Rubin (1976) distinguished among three
kinds of missing data: data that are missing completely at random, abbreviated MCAR; data that

1If you’re unfamiliar with matrices, simply think of X as a data table with rows representing cases and columns
representing variables. Xobs and Xmis aren’t really matrices, but rather are subsets of the complete-data matrix.

1



are missing at random, MAR; and data that are missing not at random, MNAR. The meaning of the
three terms—in particular, the distinction between MCAR and MAR—isn’t immediately obvious,
and, in retrospect, it probably would have been better had Rubin chosen different terminology.
These terms, however, are now used nearly universally in the literature on statistical estimation
with missing data, and so we’re obliged to understand them.

� Data are MCAR if the missing data are effectively a simple random sample of the complete
data, in which case the observed data are also a simple random sample of the complete data.
Under these circumstances, the probability that a data value is missing, which Rubin terms
missingness, is unrelated to the data value or to any other value, missing or observed, in the
data set. When missing data are MCAR, complete-case analysis produces unbiased estimates
of regression coefficients, although it may not use information in the sample efficiently.

� Data are MAR if missingness is unrelated to the missing data conditional on the observed
data. MCAR, therefore, is a stronger condition than—and a special case of—MAR. Suppose,
for example, that some individuals fail to provide their incomes in a sample survey, and further
that individuals with higher incomes are more likely to decline to answer, but that conditional
on other observed characteristics of the individuals, such as their occupation, education, age,
and so on, refusal to answer the question is unrelated to income. Then the missing income data
are MAR but not MCAR. Multiple imputation of missing data, described in this appendix,
and some other strategies not described here, can provide unbiased and efficient estimates of
regression coefficients when data are MAR.

� Data are MNAR when they aren’t MAR—that is, when missingness is related to the missing
values themselves even conditioning on the observed data. When data are MNAR, it’s neces-
sary explicitly to model the missingness mechanism in order to obtain unbiased estimates of
regression coefficients, a much more difficult process than handling data that are MAR.2 The
missingness mechanism is therefore said to be ignorable when data are MCAR or MAR, and
nonignorable when data are MNAR.

It’s fair to say that unless missing data are generated by the design of the data-collection procedure
(e.g., when some respondents are selected at random to answer one set of questions on a survey and
other respondents another set of questions), missing data are almost always MNAR. Nevertheless,
if missing data are close enough to MAR then methods like multiple imputation can produce much
less biased estimates than complete-case analysis.

2 Outline of Multiple Imputation

Imputation of missing values—that is, filling in missing data with plausible values—is a long-standing
general technique for dealing with missing data. Some common traditional imputation methods
include mean imputation, replacing missing values for a variable with the mean of the observed values;
regression imputation, or, more generally, conditional mean imputation, replacing missing values with
predicted values, based, for example, on fitting a regression model to the observed data; and hot-deck
imputation, replacing missing values with observed values for similar cases. Unconditional mean
imputation is seriously flawed and is generally much worse than simply discarding missing data.
Other single-imputation methods are also, but more subtly, flawed, in that they fail to capture the
added uncertainty due to missing data, and as a consequence can bias not just coefficient standard
errors but regression coefficient estimates themselves.

2A common example of such a model is Heckman’s selection-regression model (Heckman, 1974, 1976), for which
he won a Nobel Prize in economics; such models can be very sensitive to distributional assumptions and assumptions
about the missing-data mechanism—see, e.g., Tukey’s caustic comments following Heckman and Robb (1986).
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Multiple imputation of missing data improves on regression imputation by sampling several
times from the distribution of the missing data conditional on the observed data, producing sev-
eral completed data sets. In doing so, it takes into account not only uncertainty due to residual
variation—that is, the inability to predict missing values without error from the observed data (e.g.,
by sampling from the estimated error distribution for a continuous variable or sampling from the
estimated conditional probability distribution of a factor)—but also uncertainty in the parameter
estimates used to obtain the predictions (by sampling from the estimated distribution of the param-
eters of the imputation model). That said, multiple imputation isn’t a single technique but rather a
collection of methods.

One approach, taken, for example, by Schafer (1997), is to specify a multivariate model for
the complete data, such as the multivariate-normal distribution, and to base imputations on that
model. This approach is available in Schafer’s norm package for R (Schafer, 2013). Although the
multivariate-normal model is a very strong model for the complete data, there is evidence that
multiple-imputation inferences based on it are robust, and the model can even be applied to highly
non-normal data such as dummy variables generated from a factor (see, e.g., Allison, 2002).

Another, more flexible, approach is to build a conditional prediction model for each variable
with missing data. For example, missing data in a continuous variable might, perhaps after suitable
transformation, be predicted using a normal linear model, while missing data in a binary factor
might be predicted using a logistic regression. Because the predictors in these conditional models
are in general themselves subject to missing data, at each stage missing values in the predictors
are filled in with current imputations, and the process is iterated, cycling through the imputation
models until the aggregated predictions stabilize (see the example in Section 3). The whole iterated
process is repeated to produce several completed data sets. This approach is implemented in the
mice package (an acronym for multivariate imputation by chained equations), which we use in
Section 3.

Suppose now that we have M completed data sets, each with the missing values imputed, and
that we fit a regression model to each completed data set. For concreteness, we’ll suppose that this
is a normal linear model to be fit by least squares,

(y|x1, . . . , xk) ∼ N(β0 + β1x1 + · · ·+ βkxk, σ
2)

but it could be another regression model, such as a logistic-regression model for a binary response,
or indeed any estimate of a population parameter derived from the data. For the mth data set we
have estimates bm = (b0m, b1m, . . . , bkm) = {bjm}. Because the imputed missing values differ across
the completed data sets so will the estimated regression coefficients. Using standard methods, for
example, for least-squares estimates, we can also calculate standard errors for the coefficients in the
model fit to the mth completed data set: [SE(b0m),SE(b1m), . . . ,SE(bkm)] = {SE(bjm)}.

Rubin (1976) provides simple and very general rules for combining the multiple estimates {bjm}
of βj and standard errors {SE(bjm)} to produce an overall estimate b̃j and its standard error.

� The overall estimate is particularly straightfoward, just the average of the M estimates:

b̃j =

∑M
m=1 bjm
M

� The standard error of the overall estimate has two components, based respectively on within-
imputation variation and between-imputation variation, the former reflecting sampling varia-
tion and the latter reflecting the additional uncertainty induced due to filling in the missing
data:

SE(̃bj) =
√
VW
j + V B

j

where
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VW
j =

∑M
m=1 SE2(bjm)

M

V B
j =

∑M
m=1

(
bjm − b̃j

)2
M − 1

Once b̃j and SE(̃bj) are computed, standard statistical inference, that is, hypothesis tests and
confidence intervals, can be based on the t-distribution, with large-sample degrees of freedom given
by

dfj = (M − 1)

(
1 +

1

Rj

)
where

Rj =
M + 1

M
×
V B
j

VW
j

is the the relative increase in variance (or riv) of b̃j due to missing data. The estimated rate of
missing information is γ̃j = Rj/(Rj + 1). As mentioned, this formula for df is a large-sample result,
which doesn’t depend on the number of cases n in the data set. Adjustments to degrees of freedom
are available for small data sets (see Barnard and Rubin, 1999).

The efficiency of the multiple-imputation estimator depends on the rate of missing information
and increases rapidly with the number of multiple imputations M , asymptotically approaching the
efficiency of the maximum-likelihood estimator; the relative efficiency of the multiple-imputation
estimator is RE(̃bj) = M/(M +γj). Even for a high rate of missing information, such as γ = 0.5, for

example, as few as five multiple imputations provide reasonably high relative efficiency, RE(̃bj) =
5/(5 + 0.5) = 0.91; on the standard-error scale, this is

√
0.91 = 0.95. In practice, more multiple

imputations are typically used, say M = 10, 20, or even more.

2.1 * Multiple-Parameter Inference

The results in this section are based on Schafer (1997, Sec. 4.3.3). Suppose that we want to test
the linear hypothesis H0: Lβ = c, where L is a q × (k + 1) hypothesis matrix of rank q containing
prespecified constants, and c is a prespecified q × 1 vector, most often containing zeros (as in
Section 5.3.5 of the R Companion). Then, for complete data and under H0, the Wald test statistic

Z2
0 = (Lb− c)′

[
LV̂L′

]−1
(Lb− c)

follows a large-sample χ2 distribution with q degrees of freedom. Here, V̂ is the estimated covariance
matrix of the regression coefficients b.

Now imagine that we don’t have complete data but have estimates bm and V̂m for M data
sets completed by multiple imputation of missing values. Let hm = Lbm − c be the value of the
hypothesis and V̂h

m = LV̂mL′ be the estimated covariance matrix of the hypothesis for the mth
completed data set. Then

h̃ =
1

M

M∑
m=1

hm

Vh
W =

1

M

M∑
m=1

V̂h
m

Vh
B =

1

M − 1

M∑
m=1

hmh′m
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Instead of pooling within- and between-imputation variation, Vh
W and Vh

B , as in single-parameter
parameter inference, it turns out to be simpler to base a Wald test statistic on just Vh

W :

F0 =
h̃′Vh

W h̃

q(1 +R)

where in close analogy to the single-parameter case

R =
M + 1

M
×

trace
[
Vh

B

(
Vh

W

)−1]
q

F0 follows a large-sample F -distribution with q numerator degrees of freedom and denominator
degrees of freedom equal to

4 + [q(M − 1)− 4]

[
1 +

1

R
× q(M − 1)− 2

q(M − 1)

]
when q(M − 1) > 4

and

1
2 (M − 1)(q + 1)

(
1 +

1

R

)2

when q(M − 1) ≤ 4

As in the one-parameter case, there are adjustments to the denominator degrees of freedom for small
n(see Reiter, 2007).

3 An Example: Infant Mortality, GDP, and Women’s Edu-
cation

In this section, we adapt and elaborate an example from Fox (2016, Sec. 20.4.4) based on social-
indicator data from the United Nations for 207 countries in 1998. The data are available in the UN98

data set in the carData package:

library("carData")

summary(UN98)

region tfr contraception educationMale educationFemale

Africa :55 Min. :1.19 Min. : 2.0 Min. : 3.30 Min. : 2.00

America:41 1st Qu.:1.95 1st Qu.:21.0 1st Qu.: 9.75 1st Qu.: 9.32

Asia :50 Median :3.07 Median :47.0 Median :11.25 Median :11.65

Europe :44 Mean :3.53 Mean :43.4 Mean :11.41 Mean :11.28

Oceania:17 3rd Qu.:4.98 3rd Qu.:64.0 3rd Qu.:13.90 3rd Qu.:13.65

Max. :8.00 Max. :86.0 Max. :17.20 Max. :17.80

NA's :10 NA's :63 NA's :131 NA's :131

lifeMale lifeFemale infantMortality GDPperCapita economicActivityMale

Min. :36.0 Min. :39.1 Min. : 2.0 Min. : 36 Min. :51.2

1st Qu.:57.4 1st Qu.:59.6 1st Qu.: 12.0 1st Qu.: 442 1st Qu.:72.3

Median :66.5 Median :72.2 Median : 30.0 Median : 1779 Median :76.8

Mean :63.6 Mean :68.4 Mean : 43.5 Mean : 6262 Mean :76.5

3rd Qu.:70.9 3rd Qu.:76.4 3rd Qu.: 66.0 3rd Qu.: 7272 3rd Qu.:81.2

Max. :77.4 Max. :82.9 Max. :169.0 Max. :42416 Max. :93.0

NA's :11 NA's :11 NA's :6 NA's :10 NA's :42

economicActivityFemale illiteracyMale illiteracyFemale

Min. : 1.9 Min. : 0.20 Min. : 0.20

1st Qu.:37.0 1st Qu.: 2.95 1st Qu.: 4.85

Median :48.4 Median :10.83 Median :20.10
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Mean :46.8 Mean :17.55 Mean :27.91

3rd Qu.:56.4 3rd Qu.:27.57 3rd Qu.:48.02

Max. :90.6 Max. :79.10 Max. :93.40

NA's :42 NA's :47 NA's :47

It’s clear that there is a great deal of missing data, especially for the two education variables,
educationFemale and educationMale, the average number of years of education respectively for
women and men.

3.1 Preliminaries

We load the carEx and mice packages, which we’ll use below. The carEx (car Extras or Experimental)
package supplements the car package, which it loads, along with carData.3

library("carEx")

Loading required package: car

library("mice")

Loading required package: lattice

Attaching package: 'mice'

The following objects are masked from 'package:base':

cbind, rbind

The md.pattern() function in the mice package reports the missing-data patterns that occur
in the UN98 data set:

md.pattern(UN98, plot=FALSE)

region infantMortality tfr GDPperCapita lifeMale lifeFemale economicActivityMale

39 1 1 1 1 1 1 1

58 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1

6 1 1 1 1 1 1 0

15 1 1 1 1 1 1 0

6 1 1 1 1 1 1 0

2 1 1 1 1 1 1 0

2 1 1 1 1 1 1 0

4 1 1 1 1 1 1 0

1 1 1 1 1 0 0 1

2 1 1 1 0 1 1 1

3 1 1 1 0 1 1 0

1 1 1 1 0 0 0 1

1 1 1 1 0 0 0 1

2 1 1 0 1 0 0 1

3The carEx package isn’t available on CRAN but can be installed by the command install.packages("carEx",

repos="http://R-Forge.R-project.org"). Eventually, the functions from the carEx package that we use in this
appendix will likely migrate to the car package on CRAN.
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2 1 1 0 1 0 0 1

1 1 1 0 0 1 1 1

1 1 0 1 1 1 1 0

1 1 0 0 1 1 1 1

1 1 0 0 1 0 0 1

1 1 0 0 1 0 0 0

2 1 0 0 0 0 0 0

0 6 10 10 11 11 42

economicActivityFemale illiteracyMale illiteracyFemale contraception

39 1 1 1 1

58 1 1 1 1

11 1 1 1 0

19 1 1 1 0

15 1 0 0 1

3 1 0 0 1

3 1 0 0 0

5 1 0 0 0

6 0 1 1 1

15 0 1 1 1

6 0 1 1 0

2 0 0 0 1

2 0 0 0 1

4 0 0 0 0

1 1 0 0 1

2 1 1 1 0

3 0 0 0 0

1 1 1 1 0

1 1 0 0 0

2 1 1 1 0

2 1 0 0 1

1 1 1 1 0

1 0 0 0 0

1 1 0 0 0

1 1 0 0 1

1 0 0 0 0

2 0 0 0 0

42 47 47 63

educationMale educationFemale

39 1 1 0

58 0 0 2

11 1 1 1

19 0 0 3

15 1 1 2

3 0 0 4

3 1 1 3

5 0 0 5

6 1 1 2

15 0 0 4

6 0 0 5

2 1 1 4

2 0 0 6

4 0 0 7

1 0 0 6

2 0 0 4

3 0 0 8
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1 0 0 6

1 0 0 8

2 0 0 6

2 0 0 7

1 0 0 5

1 0 0 8

1 0 0 7

1 0 0 8

1 0 0 11

2 0 0 12

131 131 551

Ones in the output represent observed data and zeroes missing data. Thus, for example, only 39 of the
207 cases are completely observed, and 58 are missing just educationMale and educationFemale.
The last column counts the number of missing values in each pattern, and the last row the number
of missing values in each variable. It’s apparent that several paris of variables for males and females
(e.g., lifeFemale and lifeMale) are always missing or observed together.

It’s our object to regress infantMortality (infant deaths per 1000 live births) on GDPperCapita

(in U. S. dollars), educationFemale, and region, but a complete-case analysis includes only 207−
131 = 76 of the 207 countries:

mod.un <- lm(log(infantMortality) ~ region + log(GDPperCapita) + educationFemale,

data=UN98)

S(mod.un)

Call: lm(formula = log(infantMortality) ~ region + log(GDPperCapita) +

educationFemale, data = UN98)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.7078 0.2509 26.73 < 2e-16

regionAmerica -0.4032 0.1697 -2.38 0.02029

regionAsia -0.3464 0.1649 -2.10 0.03933

regionEurope -0.7507 0.1853 -4.05 0.00013

regionOceania -0.2866 0.2922 -0.98 0.33004

log(GDPperCapita) -0.2764 0.0539 -5.13 2.5e-06

educationFemale -0.0921 0.0281 -3.28 0.00163

Residual standard deviation: 0.399 on 69 degrees of freedom

(131 observations deleted due to missingness)

Multiple R-squared: 0.86

F-statistic: 70.5 on 6 and 69 DF, p-value: <2e-16

AIC BIC

84.86 103.51

This regression model reflects a preliminary examination of the data that motivated the log trans-
formation of both the response infantMortality and the predictor GDPperCapita. Diagnostics
applied to the fitted model suggest that the specification is adequate (although there is a suggestion
of a nonlinear relationship of log infant mortality to women’s education and perhaps to log GDP;
see Figure 1) but that there is an influential case, Iraq (Figure 2):

crPlots(mod.un, smooth=list(span=0.9)) # large span for 76 cases

avPlots(mod.un)

outlierTest(mod.un)
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Figure 1: Component-plus-residual plots for the preliminary model fit to complete cases in the UN
data.

rstudent unadjusted p-value Bonferonni p

Iraq 4.3501 4.675e-05 0.003553

We refit the model dedicating a dummy regressor to Iraq (and invite the reader to redo the
diagnostics for the updated model):

UN98$Iraq <- rownames(UN98) == "Iraq"

mod.un.2 <- update(mod.un, . ~ . + Iraq, data=UN98)

compareCoefs(mod.un, mod.un.2)

Calls:

1: lm(formula = log(infantMortality) ~ region + log(GDPperCapita) +

educationFemale, data = UN98)

2: lm(formula = log(infantMortality) ~ region + log(GDPperCapita) +

educationFemale + Iraq, data = UN98)

Model 1 Model 2

(Intercept) 6.708 6.830

SE 0.251 0.225

regionAmerica -0.403 -0.443

SE 0.170 0.151

regionAsia -0.346 -0.397

SE 0.165 0.147
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Figure 2: Added-variable plots for the preliminary model fit to complete cases in the UN data.
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regionEurope -0.751 -0.794

SE 0.185 0.165

regionOceania -0.287 -0.384

SE 0.292 0.261

log(GDPperCapita) -0.2764 -0.3382

SE 0.0539 0.0501

educationFemale -0.0921 -0.0568

SE 0.0281 0.0263

IraqTRUE 1.681

SE 0.386

It’s generally desirable to take an “inclusive” approach to imputing missing data (see, e.g., Collins
et al., 2001), using a richer imputation model than the eventual analytic model that we intend to fit
to the multiply-imputed data. The object is to make the MAR assumption that underlies multiple
imputation plausible by including variables in the imputation model that are likely related to the
missing data and that should help to predict missingness. To this end, we include tfr (the total
fertility rate, children per woman), contraception (percentage of married women using any method
of contraception), lifeFemale (expectation of life at birth, in years), economicActivityFemale

(percentage economically active), and illiteracyFemale (percentage 15 years and older who are
illiterate):

UN2 <- UN98[, c(1, 2, 3, 5, 7, 8, 9, 11, 13)]

names(UN2)

[1] "region" "tfr" "contraception"

[4] "educationFemale" "lifeFemale" "infantMortality"

[7] "GDPperCapita" "economicActivityFemale" "illiteracyFemale"

A scatterplot matrix (Figure 3) of the numeric variables in the reduced data set reveals that
several have skewed distributions.

scatterplotMatrix(UN2[, -1], smooth=list(span=0.9)) # dropping region

Although the imputation method that we’ll use doesn’t require normal data or linear relationships
among variables, we’ll likely get more precise results if we can transform these variables towards
normality; because the values of lifeFemale are far from zero, we use an arbitrary start of -30 for
this variable:

UN2$lifeFemale <- UN2$lifeFemale - 30

summary(p<- powerTransform(UN2[, -1]))

bcPower Transformations to Multinormality

Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd

tfr 0.6101 1.00 0.1335 1.0867

contraception 1.0087 1.00 0.4279 1.5895

educationFemale 1.4704 1.00 0.8749 2.0659

lifeFemale 3.1525 3.15 2.0626 4.2423

infantMortality 0.1624 0.00 -0.0681 0.3928

GDPperCapita -0.0504 0.00 -0.2645 0.1636

economicActivityFemale 0.7235 1.00 0.2297 1.2174

illiteracyFemale 0.3358 0.50 0.1342 0.5373
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Figure 3: Scatterplot matrix for the retained numeric variables in the UN data.
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Likelihood ratio test that transformation parameters are equal to 0

(all log transformations)

LRT df pval

LR test, lambda = (0 0 0 0 0 0 0 0) 138.97 8 <2e-16

Likelihood ratio test that no transformations are needed

LRT df pval

LR test, lambda = (1 1 1 1 1 1 1 1) 144.97 8 <2e-16

These results suggest the log transformation of infantMortality and GDPperCapita, the square-
root transformation of illiteracyFemale, essentially the cube of lifeFemale - 30, and leaving
the other variables alone. Using the rounded transformations:

UN.t <- as.data.frame(mapply(basicPower, UN2[, -1], p$roundlam))

scatterplotMatrix(UN.t, smooth=list(span=0.9))

The transformed data, graphed in Figure 4, are better-behaved: The distributions of the variables are
more nearly symmetric and most of the bivariate regressions are close to linear. The variable eco-

nomicActivityFemale is clearly an exception, in that it has approximately quadratic relationships
to many of the other variables in the data set.

3.2 Obtaining Multiple Imputations With mice

To further prepare the data for multiple imputation, we put back region and Iraq, and add a squared
term for educationFemale because of the quadratic relationships we noted in the scatterplot matrix
of the transformed numeric variables:

UN.t$region <- UN2$region

UN.t$Iraq <- rownames(UN2) == "Iraq"

UN.t$eaf2 <- UN.t$economicActivityFemale^2

As a general matter, it can be important to preserve features of the data that are reflected in the
analytic model, such as nonlinear relationships and interactions, and it can be advantageous to make
the imputation model more accurate.

Our next step is to use the mice() function in the mice package to generate 10 completed data
sets:

> sample(1e6, 1)

423249

system.time(UN.imps <- mice(UN.t, m=10, maxit=20, printFlag=FALSE, seed=423249))

user system elapsed

7.21 0.00 7.22

The first argument to mice() is the observed data set; the argument m=10 generates 10 multiple
imputations of the missing values in the observed data; maxit=20 specifies 20 iterations of the MICE
algorithm for each set of imputations; printFlag=FALSE suppresses printing the iteration history;
and seed=423249 sets the seed for R’s random-number generator, making the results reproducible.
As is our habit, we randomly sample and then note the seed. The mice() function returns an object
of class "mids" (“multiply-imputed data sets”).
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Figure 4: Scatterplot matrix for the transformed numeric variables in the UN data.
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By default, mice() uses a method called predictive mean matching—essentially a cross between
linear least-squares regression and hot-deck imputation—to fill in missing values for numeric vari-
ables, binomial logistic regression for dichotomous factors, and multinomial logistic regression for
polytomous factors; there are no factors with missing data in the UN data set. These defaults
can be changed via the meth argument to mice() (see help("mice"), van Buuren and Groothuis-
Oudshoorn, 2011, and van Buuren, 2018).

It’s generally a good idea to check the MICE imputations for convergence. One way to do this is
to plot the average and standard deviation of the imputed data for each variable with missing data
as a function of imputation and iteration. If the MICE imputations have converged, then these plots
should level out, and the traces for different imputations should “mix,” that is, cross one-another.
Trace plots are generated by the plot() method for "mids" objects (see help("plot.mids")), and
appear in Figure 5:

plot(UN.imps, layout=c(4, 5))

The results aren’t terrible, but there’s some indication that the imputations aren’t mixing well,
especially for the squared variable eaf2 = economicActivityFemale2 and for economicActivi-

tyFemale. As we specified the imputation model, the imputed values of eaf2 aren’t constrained to
be equal to the squares of economicActivityFemale.

This kind of inconsistency in the definition of derived variables doesn’t generally invalidate their
use in fitting an analytic model to multiply-imputed completed data sets, but it can lead to conver-
gence problems in the MICE algorithm. We can address the issue by constraining derived variables,
here eaf2, to be consistent with the variables from which they’re defined. We also up the number
of imputations to 20 and iterations to 50 (with the results shown in Figure 6), and (although it’s
not necessary to do so) we use the same seed as before for the random-number generator:

meth <- make.method(UN.t)

meth["eaf2"] <- '~ I(economicActivityFemale^2)'

system.time(UN.imps.2 <- mice(UN.t, m=20, maxit=50, method=meth,

printFlag=FALSE, seed=423249))

user system elapsed

32.59 0.00 32.59

plot(UN.imps.2, layout=c(4, 5))

The imputation traces appear to mix better now and have all levelled out by 50 iterations.

3.3 Fitting the Analytic Model to the Multiply-Imputed Data

The mice package includes a "mids" method for the generic with() function, allowing us to con-
ventiently fit a statistical model to each completed data set, producing an object of (primary) class
"mira" (“multiply-imputed repeated analyses”):

un.mods <- with(UN.imps.2, {

infantMortality <- exp(infantMortality)

GDPperCapita <- exp(GDPperCapita)

lm(log(infantMortality) ~ region + log(GDPperCapita) + educationFemale + Iraq)

})

As illustrated, we can also define variables in the completed data sets in the call to with(), in this
case (although it isn’t strictly necessary) undoing the log-transformations of infantMortality and
GDPperCapita, allowing us to specify the analytic model exactly as we did for the complete cases
(less the data argument).
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UN data.
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The pool() function in mice applies Rubin’s rules to the models fit in parallel to the M = 20
completed data sets:

(un.p <- pool(un.mods))

Class: mipo m = 20

estimate ubar b t dfcom df riv

(Intercept) 6.487314 0.02726510 0.0089767 0.0366906 199 97.057 0.345699

regionAmerica -0.439707 0.01232448 0.0030291 0.0155051 199 116.281 0.258070

regionAsia -0.450915 0.00940302 0.0014835 0.0109607 199 143.286 0.165653

regionEurope -0.898488 0.01422884 0.0047972 0.0192659 199 95.513 0.354006

regionOceania -0.628460 0.02113247 0.0140349 0.0358691 199 57.148 0.697345

log(GDPperCapita) -0.252927 0.00121444 0.0018205 0.0031260 199 30.539 1.574018

educationFemale -0.082236 0.00029573 0.0007909 0.0011262 199 20.857 2.808082

IraqTRUE 1.461989 0.23528218 0.0219610 0.2583413 199 166.886 0.098006

lambda fmi

(Intercept) 0.256892 0.27175

regionAmerica 0.205132 0.21846

regionAsia 0.142112 0.15384

regionEurope 0.261451 0.27644

regionOceania 0.410845 0.43044

log(GDPperCapita) 0.611502 0.63467

educationFemale 0.737401 0.75942

IraqTRUE 0.089258 0.09998

summary(un.p)

estimate std.error statistic df p.value

(Intercept) 6.487314 0.191548 33.8678 97.057 0.0000e+00

regionAmerica -0.439707 0.124519 -3.5312 116.281 5.3487e-04

regionAsia -0.450915 0.104693 -4.3070 143.286 2.8166e-05

regionEurope -0.898488 0.138802 -6.4732 95.513 1.0264e-09

regionOceania -0.628460 0.189391 -3.3183 57.148 1.1118e-03

log(GDPperCapita) -0.252927 0.055911 -4.5238 30.539 1.1488e-05

educationFemale -0.082236 0.033559 -2.4505 20.857 1.5297e-02

IraqTRUE 1.461989 0.508273 2.8764 166.886 4.5479e-03

The columns labelled ubar, b, and t are respectively the within-imputation, between-imputation,
and pooled coefficient variance; dfcom are the degrees of freedom for the complete data and df the
adjusted df for each coefficient; riv is the relative increase in variance due to missing data; lambda is
the proportion of total coefficient variance due to missing data; and fmi is the proportion (fraction)
of missing information.

The carEx package includes Anova(), linearHypothesis(), deltaMethod(), coef(), and vcov()

methods for "mira" objects; for example:

Anova(un.mods)

Analysis of Deviance Table (Type II tests)

Response: log(infantMortality)

Based on 20 multiple imputations

F num df den df missing info riv Pr(>F)

region 11.48 4 172.1 0.224 0.289 2.8e-08

log(GDPperCapita) 20.46 1 34.0 0.612 1.574 7.0e-05

educationFemale 6.01 1 25.9 0.737 2.808 0.0213

Iraq 8.27 1 175.0 0.089 0.098 0.0045
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Because the hypotheses that it tests may have more than 1 numerator df, Anova() uses the approach
in Reiter (2007) to compute denominator df. In contrast, pool() uses the approach in Barnard and
Rubin (1999), which is appropriate only for t-tests of individual coefficients.

We can use the compareCoefs() function in the car package to compare the fits of the complete-
data and multiple-imputation models:

compareCoefs(mod.un.2, un.mods)

Warning in compareCoefs(mod.un.2, un.mods): models to be compared are of different classes

Calls:

1: lm(formula = log(infantMortality) ~ region + log(GDPperCapita) +

educationFemale + Iraq, data = UN98)

2: with.mids(data = UN.imps.2, expr = { infantMortality <- exp(infantMortality)

GDPperCapita <- exp(GDPperCapita) lm(log(infantMortality) ~ region +

log(GDPperCapita) + educationFemale + Iraq)})

Model 1 Model 2

(Intercept) 6.830 6.487

SE 0.225 0.192

regionAmerica -0.443 -0.440

SE 0.151 0.125

regionAsia -0.397 -0.451

SE 0.147 0.105

regionEurope -0.794 -0.898

SE 0.165 0.139

regionOceania -0.384 -0.628

SE 0.261 0.189

log(GDPperCapita) -0.3382 -0.2529

SE 0.0501 0.0559

educationFemale -0.0568 -0.0822

SE 0.0263 0.0336

IraqTRUE 1.681 1.462

SE 0.386 0.508

The two sets of results aren’t radically different, but they do differ in detail. In particular the
magnitude of the estimated log(GDPperCapita) coefficient is about two standard errors smaller in
the multiple-imputation analysis, and that of the educationFemale coefficient is about one standard
error larger.

Finally, a word about regression diagnostics: In analyzing the complete data, we decided to treat
Iraq as a special case, and we carried over this decision to our multiple-imputation analysis. As
it turns out, the coefficient of the dummy regressor for Iraq is quite large in both analyses. But
there are many more counties in the multiple-imputation analysis than in the complete-case analysis,
and it’s possible that some of these also require special treatment. It’s not obvious how to perform
unusual-case and other regression diagnostics for multiply-imputed data. One simple, if ad-hoc,
approach is to use the standard diagnostics to examine a few of the models fit to the completed data
sets. For our example, the model objects are stored in the list un.mods$analyses. We invite the
reader to perform this analysis, starting, for example, with avPlots(un.mods$analyses[[1]]).
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4 Complementary Reading and References

� Much of the material for this appendix is derived from Fox (2016, Chap. 20), which deals
more generally with missing data in regression models and includes an explanation of multiple
imputation.

� Little and Rubin (2002) is an accessible and wide-ranging treatment of methods for dealing
with missing data by authors who contributed fundamentally to the field.

� Allison (2002) presents a brief, high-quality overview of statistical estimation in the presence
of missing data, including a discussion of muliple imputation.

� Schafer (1997) is a more advanced treatment of the subject.

� van Buuren (2018) focuses on multiple imputation for missing data and is the definitive source
for the mice package.
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